The Evolution and Emergence of RNA Viruses
The Evolution and Emergence of RNA Viruses

EDWARD C. HOLMES

Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, Pennsylvania, USA and Fogarty International Center, National Institutes of Health, Bethesda, USA
Everyone knows that pestilences have a way of recurring in the world; yet somehow we find it hard to believe in ones that crash down on our heads from a blue sky.

Albert Camus, *La Peste*
For Rachel and Scott.
Preface

Hurricanes are not good for much. This book was conceived in a ‘hotel’ room in Valladolid, Mexico, during October 2005 where my wife and I had taken shelter from Hurricane Wilma, a category 5 storm responsible for the lowest pressure ever recorded in the Caribbean. With little else to do for 3 days, I set about planning the book that Paul Harvey and Bob May, the series editors, had generously asked me to write. As the good citizens of Cancún, Cozumel, Playa del Carmen, and Tulum will testify, I escaped lightly.

I wish to thank the following people who graciously commented on various chapters: Siobain Duffy, Adrian Gibbs, John McCauley, Andrés Moya, Cadhla Ramsden, and Rafa Sanjuán. The text was greatly improved by their diligent reading, intelligent criticism, and sound ideas. As should go without saying, any errors that remain are entirely my own doing. In addition, I benefited greatly from numerous discussions with John Aaskov, Elodie Ghedin, Bryan Grenfell, Oliver Pybus, Andrew Rambaut, Tony Schmitt, Laura Shackelton, and Paolo Zanotto. I am also grateful to Helen Eaton and Ian Sherman at Oxford University Press for their relaxed encouragement. Finally, I am indebted to my wife Rachel for her patience, support, and willingness to leave me alone on Saturday mornings.
This page intentionally left blank
Contents

1 Introduction

1.1 Why study RNA virus evolution?
 1.1.1 Ways to study viral evolution 2
 1.1.2 The scope of this book 4

1.2 RNA viruses and evolutionary biology
 1.2.1 The RNA virus world 6

1.3 The basics of viral biology
 1.3.1 A cursory history of virology 8
 1.3.2 Virology 101 9
 1.3.3 Exploring the virosphere 13

2 The origins of RNA viruses

2.1 Introduction
 2.1.1 The perils of deep viral phylogeny 15

2.2 Theories for the origin of RNA viruses
 2.2.1 The regressive origin theory 17
 2.2.2 RNA viruses as escaped genes 18
 2.2.3 RNA viruses and the RNA world 20
 2.2.4 Eigen’s paradox 22
 2.2.5 The taxonomic distribution of RNA viruses 24
 2.2.6 Conserved protein structures 25

2.3 Deep phylogenetic relationships among RNA viruses
 2.3.1 The ‘higher-order’ relationships of RNA viruses 29
 2.3.2 Phylogenies based on genome organization 34
 2.3.3 Phylogenies based on protein structure 34

2.4 RNA viruses and the evolution of the genetic code 35

3 The mechanisms of RNA virus evolution

3.1 The evolutionary dynamics of RNA viruses
 3.1.1 Mutation rates in RNA viruses and their determinants 37
 3.1.2 A comparison of substitution rates in viruses 39
 3.1.3 Differences in viral generation time 42
4.2.7 Recombination and the quasispecies 99
4.2.8 ‘Memory’ in viral quasispecies 99
4.3 Error thresholds, extinction thresholds, and error catastrophes 100
4.4 Concluding remarks 103

5 Comparative genomics and the macroevolution of RNA viruses 104
5.1 The evolution of genome architecture in RNA viruses 104
 5.1.1 The evolution of genome size 104
 5.1.2 The exceptions: coronaviruses and roniviruses 107
 5.1.3 The evolution of genome organization: an overview 109
 5.1.4 The evolution of genome segmentation 111
 5.1.5 The evolution of genome orientation and dsRNA viruses 113
 5.1.6 The evolution of overlapping reading frames 114
5.2 The processes of genome evolution 116
 5.2.1 Gene duplication in RNA virus evolution 117
 5.2.2 LGT among viruses and hosts 118
 5.2.3 Modular evolution 119
5.3 Patterns and processes of macroevolution in RNA viruses 120
 5.3.1 Speciation in RNA viruses 121
 5.3.2 A birth-death model of viral evolution 124
 5.3.3 The birth and death of endogenous retroviruses 128

6 The molecular epidemiology, phylogeography, and emergence of RNA viruses 131
6.1 Phylodynamics: linking viral evolution at the phylogenetic and epidemiological scales 131
 6.1.1 Coalescent approaches to viral epidemiology 133
6.2 Cross-species transmission, co-divergence, and emergence 135
 6.2.1 The RNA/DNA divide again 135
 6.2.2 Inferring co-divergence 137
 6.2.3 The evolution of persistence in RNA viruses 138
 6.2.4 Host phylogeny and viral emergence 139
6.3 The evolutionary genetics of viral emergence 142
 6.3.1 Adaptation and emergence 142
 6.3.2 ‘Off-the-shelf’ emergence 144
 6.3.3 The fitness landscapes of emergence 146
 6.3.4 Recombination, reassortment, and viral emergence 147
6.4 The phylogeography of human viruses 148
 6.4.1 Viruses differ in phylogeographic pattern 149
6.5 Major transitions in human ecology and viral evolution 153
 6.5.1 The transitions 154
 6.5.2 Immunodeficiency and disease emergence 155
7 Case studies in RNA virus evolution and emergence 156
 7.1 The evolutionary biology of influenza virus 156
 7.1.1 The diversity of influenza virus 156
 7.1.2 The evolution of avian influenza virus 158
 7.1.3 Antigenic drift and shift 161
 7.1.4 Antigenic cartography and the punctuated evolution of HA 162
 7.1.5 Genome-wide evolutionary processes 165
 7.2 The emergence and evolution of HIV 167
 7.2.1 A brief history of HIV/AIDS 167
 7.2.2 The genetic diversity of HIV 169
 7.2.3 What and why are subtypes? 172
 7.2.4 The origins and spread of HIV 173
 7.2.5 The intra- and inter-host evolutionary dynamics of HIV 176
 7.2.6 The great obsession moves to HIV 177
 7.2.7 Epidemiological scale dynamics 178
 7.3 The evolution of dengue virus 180
 7.3.1 The origins of DENV 182
 7.3.2 DENV biodiversity 184
 7.3.3 Lineage birth-death in DENV 186
 7.3.4 DENV fitness 187
 7.3.5 Comparing dengue and yellow fever 188
 7.3.6 Why no yellow fever in Asia? 190
 7.4 The phylogeography and evolution of rabies virus 191
 7.4.1 The world of lyssaviruses 192
 7.4.2 The spatiotemporal dynamics of RABV 195

8 Epilogue 198

References 201

Index 249
Introduction

1.1 Why study RNA virus evolution?

Viral diseases, particularly the exotic and the fatal, hold a unique fascination to scientists and the general public alike. Because of books like *The Hot Zone* (Preston 1994), which glamorizes outbreaks of highly virulent filoviruses, the public image of RNA viruses is a complex combination of the frightening and the alluring. While this has certainly given them name recognition, the accounts of RNA viruses that are increasingly commonplace in the popular media are also frustratingly inaccurate, as they are often given capabilities that could never have arisen through evolution by natural selection.

The marginalization of viruses also occurs to some extent in evolutionary biology. Although abundant in nature, viruses are sometimes not considered as worthy items for scientific endeavour as the venerable *Drosophila melanogaster* or *Escherichia coli*. A major aim of this book, albeit a rather hidden one, is to show that RNA viruses are as valuable a set of organisms in which to study evolutionary processes as fruit flies or bacteria, and have the added bonus that evolutionary hypotheses can be tested far more rapidly and often with more precision. As a simple case in point, RNA viruses represent one of the few systems in which it is possible to accurately measure the fitness distributions of new mutants (Eyre-Walker and Keightley 2007).

The enormous burden of human mortality and morbidity caused by RNA viruses represents an unfortunate, often highly politicized, but extremely powerful back-drop to discussions of their evolution. This burden is particularly severe for the developing world, where there is little evidence that we winning the war against viral infections. Figures for the year 2002 provided by the World Health Organization show that, globally, almost 28 million people died of HIV/AIDS, and a staggering 18 million of diarrhoeal diseases, a significant proportion of which are due to infection by rotaviruses. Similarly, over 600,000 people died of measles even though an effective vaccine has been available since 1963.

Aside from mortality, the economic costs associated with viral infections of humans, domestic animals, and agricultural plants are staggering. For example, although only 8437 people were known to have been infected with severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) during the highly publicized outbreak of 2002–2003, with 813 deaths, the global economic bill has been estimated to be in excess of US$50 billion. Similarly, the 2001 epidemic of foot-and-mouth disease in the UK (due to foot-and-mouth disease virus, FMDV) was a major blow to British
agriculture, resulting in the death or slaughter of over 3.5 million cattle and a total estimated cost of perhaps $4 billion.

Although it is tempting to over-state the importance of evolutionary ideas as a way of alleviating morbidity and mortality, it is clear that a detailed understanding of the patterns and process of viral evolution can sometimes have major implications for public and animal health. For example, documenting the mechanics of evolutionary change may be critical to the design of future intervention strategies, particularly in the case of antigenically variable pathogens such as the human immunodeficiency virus (HIV), hepatitis C virus, and influenza A virus, where vaccination has proven impossible or only transiently effective. More esoterically, one of the most interesting debates concerning HIV, and which has had a direct impact on strategies for drug treatment, is whether the within-host evolution of this virus is dominated by the stochastic process of genetic drift or the deterministic process of natural selection (Leigh Brown 1997; Rouzine and Coffin 1999; see section 7.2).

1.1.1 Ways to study viral evolution

Broadly speaking, there are three ways in which the study of RNA virus evolution has proceeded, and can do so in the future: the theoretical, the experimental, and the comparative. While all three approaches have their individual costs and benefits, this book is set squarely within the framework of comparative biology, with the evolutionary (and often phylogenetic) analysis of viral gene and genome sequences as the main analytical tool.

The theoretical approach to studying viral evolution has a long history, rooted in ecology and population genetics, and has the power to explore, in exquisite analytical detail, the consequences of specific evolutionary or epidemiological processes. In the context of RNA viruses there is no doubt that good theory has greatly illuminated many areas of study and suggested new avenues for research, including innovative ways to design antiviral agents (Moya et al. 2000; Nowak and May 2000; Bull et al. 2005; Wilke 2005). Understandably, the potential limitation of all theoretical approaches is that they necessarily construct an idealized model of viral biology, sometimes divorced from the true complexities of the evolutionary process in nature.

The experimental approach has perhaps been the dominant mode of study in RNA virus evolution to date (see Domingo and Holland 1997 for a benchmark review). Such is the success of experimental evolution that it has been used to reveal the mechanisms of evolutionary change in general, and of RNA viruses in particular (see, for example, Turner and Chao 1999; Elena and Lenski 2003; Sanjuán et al. 2004b). The power of experimental analyses of RNA viruses is largely a function of their tractability for laboratory study, particularly their rapid rates of mutation, so that evolution can be followed in real time and in a variety of cellular environments. In addition, there is often a direct and simple link between genotype and phenotype, and relative fitness, measured using growth kinetics, is easy to assess. However, evolution in vitro
is often very different from evolution in nature, particularly for systems other than bacteriophage (where in vitro and in vivo can be argued to be much the same thing), making it difficult to generalize from individual cell types to whole organisms, and then to the epidemiological scale. For example, regions of the coronavirus genome that appear to have no function in vitro or in vivo are clearly important in nature (Gorbalenya et al. 2006). In broader terms, the desire to use RNA viruses as tools to understand evolutionary processes in general may mean that experimental studies have perhaps revealed rather less about the intricacies of viral evolution than might be hoped.

The power of the comparative approach is that it considers the evolutionary process in nature—genomes are sampled from real populations—and utilizes analytical tools with a strong basis in theory (Harvey and Pagel 1991). Its limitation, as will become evident in this book, is that teasing out the contribution of individual evolutionary processes can be troublesome when the analysis is always ‘retrospective’ to some extent, and that sample sizes are often both small and biased. Thankfully, the rise of ‘pyrosequencing’ and related technologies is making the generation of large amounts of complete genome sequence data from a diverse array of RNA viruses increasingly easy, presenting many new opportunities to reveal the nature of viral evolution (Holmes 2007). An important subtext in this book is therefore to demonstrate, perhaps rather shamelessly, the contribution that comparative biology has made to our understanding of RNA virus evolution. In doing so, I will avoid mathematical descriptions of viral evolution as much as possible, in part because these have been undertaken in detail by more able authors (for example, Nowak and May 2000), but more importantly because I wish to highlight the biological limitations in our current understanding of viral evolution. Indeed, many of the major problems in RNA virus evolution are currently limited more by data than theory. Finally, there is also perhaps a lingering mistrust of computational approaches to virology that needs to redressed, although hopefully things have moved on since the Annual Reviews of Microbiology published an article entitled ‘Coping with computers and computer evangelists’.

Another reason why I take an explicitly comparative approach to the study of RNA virus evolution is that phylogeny is one area where evolutionary ideas have very clearly entered the virological mainstream. The success of phylogeny in virology, the Trojan horse of evolutionary biology, is reflected in the number of papers published in the three top virology journals—the Journal of Virology, Virology, and the Journal of General Virology—that contain phylogenetic trees as part of their data analysis. My own unscientific survey reveals that during 2007 almost 200 papers in these journals described some sort of phylogenetic analysis, and often using the most up-to-date methods. And, of course, where there is evolutionary pattern manifest as phylogeny, there is also evolutionary process. Perhaps of more importance is that although the science of virology has classically been subdivided according to the type of host species a specific virus infects, be it an animal, plant, or bacterium, the Journal of Virology now has a more general section devoted to Genetic Diversity and Evolution. In short, the study of viral evolution has come of age.
1.1.2 The scope of this book

Although this book predominantly considers RNA viruses, broadly defined to include both retroviruses and viroids (a simple classification scheme is presented in Table 1.1), this does not mean that I entirely ignore the other classes of viral agent. Indeed, there is mounting evidence, discussed in detail in this book, that single-strand (ss) DNA viruses evolve in much the same manner as RNA viruses. In the

Table 1.1 A simple classification of RNA viruses and viroids according to their replication enzyme (RNA-dependent RNA polymerase (RdRp) or reverse transcriptase (RT)). Classes of viruses are normally shown at the family level, although some unclassified viruses are shown at the genus level. The major type of host is shown in parentheses. Information taken from the 2005 International Committee on Taxonomy of Viruses (ICTV) classification of viruses (Fauquet et al. 2005) with a few minor adjustments. The genome sizes of these viruses (excluding viroids) are shown in Fig. 5.1.

<table>
<thead>
<tr>
<th>Unsegmented</th>
<th>Segmented</th>
</tr>
</thead>
<tbody>
<tr>
<td>RdRp-utilizing ssRNA-</td>
<td></td>
</tr>
<tr>
<td>Bornaviridae (V)</td>
<td>Arenaviridae (V)</td>
</tr>
<tr>
<td>Filoviridae (V)</td>
<td>Bunyaviridae (IPV)</td>
</tr>
<tr>
<td>Paramyxoviridae (V)</td>
<td>Ophiovirus (P)</td>
</tr>
<tr>
<td>Rhabdoviridae (IPV)</td>
<td>Orthomyxoviridae (V)</td>
</tr>
<tr>
<td>Tenuivirus (IP)</td>
<td>Varicosavirus (P)</td>
</tr>
<tr>
<td>ssRNA+</td>
<td></td>
</tr>
<tr>
<td>Arteriviridae (V)</td>
<td>Benyviridae* (P)</td>
</tr>
<tr>
<td>Astroviridae (V)</td>
<td>Bromoviridae* (P)</td>
</tr>
<tr>
<td>Barnaviridae (F)</td>
<td>Cheravirus* (P)</td>
</tr>
<tr>
<td>Caliciviridae (V)</td>
<td>Comoviridae* (P)</td>
</tr>
<tr>
<td>Closteroviridae (P)</td>
<td>Furovirus* (P)</td>
</tr>
<tr>
<td>Coronavirus (V)</td>
<td>Hordeivirus* (P)</td>
</tr>
<tr>
<td>Dicistroviridae (I)</td>
<td>Idaeovirus* (P)</td>
</tr>
<tr>
<td>Flaviviridae (IV)</td>
<td>Nodaviridae (IV)</td>
</tr>
<tr>
<td>Flexiviridae (P)</td>
<td>Ourmiavirus* (P)</td>
</tr>
<tr>
<td>Hepeviridae (V)</td>
<td>Pecluvirus* (P)</td>
</tr>
<tr>
<td>Idaeovirus (I)</td>
<td>Pomovirus* (P)</td>
</tr>
<tr>
<td>Leviviridae (B)</td>
<td>Sadwavirus* (P)</td>
</tr>
<tr>
<td>Luteoviridae (P)</td>
<td>Tobavrirus* (P)</td>
</tr>
<tr>
<td>Marnaviridae (A)</td>
<td></td>
</tr>
<tr>
<td>Narnaviridae (F)</td>
<td></td>
</tr>
<tr>
<td>Picornaviridae (V)</td>
<td></td>
</tr>
<tr>
<td>Potyviridae (P)</td>
<td></td>
</tr>
<tr>
<td>Roniviridae (I)</td>
<td></td>
</tr>
<tr>
<td>Sequiviridae (P)</td>
<td></td>
</tr>
<tr>
<td>Sobemovirus (P)</td>
<td></td>
</tr>
<tr>
<td>Tetraviridae (I)</td>
<td></td>
</tr>
<tr>
<td>Tobamovirus (P)</td>
<td></td>
</tr>
<tr>
<td>Togaviridae (IV)</td>
<td></td>
</tr>
<tr>
<td>Tombusviridae (P)</td>
<td></td>
</tr>
<tr>
<td>Tymoviridae (P)</td>
<td></td>
</tr>
<tr>
<td>Umbravirus (P)</td>
<td></td>
</tr>
</tbody>
</table>
1.2 RNA viruses and evolutionary biology

Whereas a great deal has been written about the evolutionary biology of RNA viruses, an overview of the patterns and processes of evolution in these fascinating infectious agents is still lacking. Much of the prior work on RNA virus evolution has focused

Table 1.1 (Contd.)

<table>
<thead>
<tr>
<th>dsRNA</th>
<th>Segmented</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endornavirus</td>
<td>Birnaviridae (IV)</td>
</tr>
<tr>
<td>Hypoviridae</td>
<td>Chrysoviridae (F)</td>
</tr>
<tr>
<td>Totiviridae</td>
<td>Cystoviridae (B)</td>
</tr>
<tr>
<td></td>
<td>Partitiviridae* (FP)</td>
</tr>
<tr>
<td></td>
<td>Reoviridae (FIPV)</td>
</tr>
</tbody>
</table>

RT-utilizing

Caulimoviridae (P)
Hepadnaviridae (V)
Metaviridae (FIVP)
Pseudoviridae (IVP)
Retroviridae (V)

Viroids

Pospiviroidae (P)
Avsunviroidae (P)

Host groups (in parentheses) are as follows: A, algae; B, bacteria; F, fungi; I, invertebrates; P, plants; R, protists; V, vertebrates. ds, double-strand; ss, single strand; RNA+, positive-sense RNA viruses; RNA−, negative-sense RNA viruses.

* Also multicomponent, as the genome is present in multiple virus particles.
† Sometimes possess multiple segments.
on the largely descriptive molecular epidemiology of specific infections, has only utilized RNA viruses as tools to address broader evolutionary questions, or has not been set within what might be considered the mainstream of modern neo-Darwinism. If there is one over-arching aim of this book it is to place RNA viruses firmly with the mainstream of modern evolutionary biology, rather than being thought of as a quirky off-shoot (see Morse 1994 for a similar argument). To achieve this I will address, in as much detail as space permits, the causes and consequences of evolutionary change in RNA viruses.

1.2.1 The RNA virus world

Although RNA viruses are subject to the same basic evolutionary processes as other organisms, I will argue that they, along with ssDNA viruses, occupy a region of evolutionary parameter space that is very different to that where dsDNA-based organisms reside (Fig. 1.1). Whereas the latter are characterized by a high replication fidelity per nucleotide, large genomes, and often low numbers of offspring (at least in higher eukaryotes), the evolution of RNA viruses is characterized by an extremely low replication fidelity per nucleotide, small genomes, and very high offspring numbers. In particular, population sizes must be enormous in RNA viruses to offset the fact that most progeny contain deleterious mutations that cannot be masked by wild-type

RNA and ssDNA

High mutation rate (per nt)

Small genome size (<32 000 nt)

Population sizes always large

Little LGT and gene duplication

Overlapping reading frames common

Often little recombination

Often frequent recombination

Overlapping reading frames uncommon

Frequent LGT and gene duplication

Population sizes can be small

Large genome size

Low mutation rate (per nt)

dsDNA

Fig. 1.1 The differing evolutionary parameter spaces occupied by RNA- and DNA-based life-forms. Note that the properties shown are general ones, and cannot be applied to every taxon in each category (particularly for DNA-based organisms). Crucially, from an evolutionary perspective, ssDNA viruses behave more like RNA than dsDNA life forms. LGT, lateral gene transfer; nt, nucleotides.
1.2 RNA viruses and evolutionary biology

alleles carried in heterozygotes. I will further argue that many of the major aspects of
viral biology, including their genome organizations and potential to jump host species,
can be set within this fundamental evolutionary dichotomy. Similarly, I will propose
that RNA viruses create evolutionary novelty in a way that is profoundly different to
that observed in other organisms: while eukaryotes often generate genes with new
functions through gene (or genome) duplication, and bacteria through lateral gene
transfer (LGT), the constrained genome sizes exhibited by RNA viruses mean that
they must again usually rely on a combination of rampant mutation and huge popu-
lation size to create the genetic diversity they need to adapt to new environments.
Whereas the idea that RNA viruses are somehow evolutionarily ‘unique’ has a long
history, and is at the heart of the quasispecies theory of viral evolution that I discuss
in detail in Chapter 4, the differences between RNA viruses and other organisms are
in reality more quantitative than qualitative.

To extend this theme a little further, perhaps the cornerstone argument of this book
is that the key patterns and processes of RNA virus evolution are in large part a func-
tion of their intrinsically high rates of mutation, and that it is extremely difficult to
evolve the radically higher replication fidelities that characterize most DNA-based
organisms. Such highly error-prone replication has a number of direct evolutionary
consequences: that the genome sizes of RNA viruses are small, that the burden of
deleterious mutation is high, so that major increases in mutation rate (exemplified
by the presence of ‘mutator’ strains) will drastically reduce fitness, that recombi-
nation and reassortment are unable to rescue viral populations from this load of dele-
terious mutation, that complementation is both commonplace and of unappreciated
evolutionary importance, and that while rapid evolution ensures that phylogenetic
relationships can be resolved with remarkable precision in the short term, the pattern
of evolutionary history is soon eroded, thwarting attempts to determine viral ori-
gins from gene sequence data alone. I will also argue that the error-prone replication
system of RNA viruses most likely reflects their ancient origin in an ‘RNA world’.

Another important idea in this book is that despite their rapid rates of mutation,
RNA viruses experience more evolutionary constraints than is generally imagined.
Although this statement may at first seem rather strange given that the rapidity of
RNA virus evolution is something of a mantra for microbiologists, it is supported by a
considerable weight of data. Despite frequent suggestions (including a number made
by me) that RNA viruses are able to quickly adapt to a myriad of new and changing
environments, the reality of the matter is that viruses are often unable to find solu-
tions to major adaptive challenges, or do so relatively slowly. As a particular case in
point, although RNA viruses frequently cause transient ‘spill-over’ infections in new
host species (in which only a single individual is infected), most RNA viruses do not
evolve sustained transmission cycles in these emergent hosts. Cross-species transmis-
sion, the cornerstone of viral emergence, may therefore be more difficult than is often
imagined. This topic is discussed in detail in Chapter 6. While HIV is able to rapidly
evolve resistance to individual antiviral agents, such as AZT (Zidovudine), it fairs
less well against combinations of drugs. Although it is often suggested that a par-
ticular RNA virus will eventually evolve a new mode of transmission—for example,
a predominantly sexually transmitted virus like HIV will evolve aerosol or vector-borne transmission—in reality such major changes in phenotype usually occur relatively rarely. These examples, and many more, point to same conclusion: that there are major limitations to the adaptability of RNA viruses, particularly when the adaptive pathways in question are complex, and which may in turn have major implications for their control. An important goal of this book is therefore to reveal the exact nature of these constraints and explain why they exist. In particular I will argue that, paradoxically, adaptive constraints are a necessary side effect of rapid mutation (see also Eigen 1996 and Reanney 1982). However, any emphasis on evolutionary constraints should not be taken to mean that RNA viruses are conservative entities; to be sure, their evolutionary rates are still frighteningly quick, they are still able to thwart many of our attempts to control them with vaccines and drugs, and they often jump species boundaries and emerge in new hosts. Rather, my argument is that the cases when evolution is not rapid, when the evolution of drug resistance is unsuccessful, or when adaptation to new hosts does not occur, provide as important an insight into the evolutionary process as those cases of ‘fast-forward’ change that usually dominate discussions of RNA virus evolution.

As well as considering the nature of evolutionary processes, a considerable chunk of this book (as reflected in its title) is dedicated to the question of viral emergence. Arguably, it is the cross-species transmission of RNA viruses and their establishment in new hosts that has placed them within the sphere of interest of a wider range of biologists, particularly since human populations can be considered as under ‘threat’ from a number of emerging viruses. While the study of viral emergence is of great importance, I will propose (in Chapter 5) that in a broader sense cross-species transmission is just one of the ‘macroevolutionary’ processes exhibited by RNA viruses.

1.3 The basics of viral biology

Although this is assuredly not a textbook of virology (and confused readers should stop now) it is important to outline a few of the basic concepts in virus genetics, design, and function, particularly those that will have a major bearing on the evolutionary issues discussed in later chapters. In addition, it is necessary to define some of the virological terms that are used frequently in this book.

1.3.1 A cursory history of virology

The word ‘virus’ has its roots in the Latin for ‘poison’, and has been used in the context of disease for almost 400 years. Following a very liberal interpretation, viruses were first described, if only indirectly, by the English doctor Edward Jenner (1749–1823) who is better known as the ‘inventor’ of vaccination (although a similar approach had been used previously in both China and the Islamic world). Despite the advance made by Jenner, he had no idea that a virus was a ‘living’ agent, a fact that would not be confirmed for another 100 years, at the junction of the nineteenth and twentieth centuries,
when the science of virology truly came of age. Although a number of figures are responsible for the birth of virology, three people working on tobacco mosaic virus (TMV)—the German Adolf Mayer (1843–1942), the Russian Dimitri Ivanovsky (1864–1920), and the Dutchman Martinus Beijerinck (1851–1931)—are generally acknowledged as the discoverers of viruses. In the years that followed the discovery of TMV, a number of ‘filterable’ agents, which we now know as viruses, were first described, including FMDV (1898; the first animal virus to be discovered), myxoma-virus (1898), yellow fever virus (the transmission cycle of which was first described in 1901), rabies virus (1903), and poliovirus (1909). Another important milestone was reached in 1915 when Felix d’Herelle (1873–1949) and Frederick Twort (1877–1950) co-discovered viruses that infect bacteria—the bacteriophages—so presenting the scientific world with some of most important research tools in molecular biology. Bacteriophages have also played a major role in their host’s evolution as agents of LGT (Ochman et al. 2000). Readers interested in the history of virology should consult the excellent essay on the subject by Arnie Levine (Levine 1996).

1.3.2 Virology 101

In modern parlance, viruses can be defined as obligate parasites that rely on a host cell for replication, be it from an animal, plant, protozoan, or bacterium. In more formal terms, viruses are subcellular organisms whose genomes consist of nucleic acid (RNA and/or DNA), and which replicate inside host cells using host metabolic machinery to differing extents. For example, some viruses carry their own polymerase enzymes, others do not, although all rely on their host’s translation apparatus. It is possible that every cellular species of life on Earth experiences at least one RNA virus infection, although it is equally clear that we have only scratched the surface of viral biodiversity, the so-called virosphere. As a dramatic example, to date no RNA virus (nor any ssDNA virus) has been observed in archaeabacteria, although there are increasing descriptions of dsDNA viruses from these organisms. Although this may be taken to mean that RNA viruses evolved subsequent to the divergence of the archaeabacteria from other taxa, it is more likely that surveys of viral biodiversity in these species have been insufficiently intensive.

Some even debate whether viruses should be classified as ‘living’ organisms as they must obviously parasitize host cells for key aspects of their life cycle, and a number of viruses, particularly those with ssDNA genomes, do not even encode their own replication enzymes. Indeed, in some respects viruses are no more living than genes are living. Yet, while viruses do not fulfil all the criteria that some may use to classify living organisms (although this is hotly debated; Raoult et al. 2004), they do possess perhaps the two most important criteria of all: they reproduce and they evolve by natural selection. Hence the rules of evolutionary change apply to RNA viruses as much as they apply to humans. Therefore, under more liberal definitions of what constitutes a living organism—such as Leslie Orgel’s CITREONS (Complex Information-Transforming Reproductive Objects That Evolve by Natural Selection)—viruses are very much alive, and can be studied using the tools of modern evolutionary biology.
There are a number of other infectious agents that have similarities to viruses, but which will only be mentioned briefly in this book, largely because of a lack of available space. These agents are as follows. (i) Viroids: small (246–401 nucleotides, nt) infectious agents of plants that exist as circular, covalently closed ssRNA molecules with complex folding structures that do not encode any proteins (and therefore cannot replicate themselves), and which are becoming increasingly important tools for the study of evolutionary processes (Daròs et al. 2006). Viroids will be discussed in more detail with respect to viral origins. (ii) Satellite RNAs: small RNA molecules that require a helper virus for replication upon co-infection but which may encode a coat protein, with human hepatitis delta ‘virus’ (HDV) an important example. Finally, (iii) virusoids: satellite RNAs of plants that possess a circular, highly base-paired structure like a viroid, but which also differ from viroids in that they require a helper virus.

One reason for the ease of experimental and comparative analysis in RNA viruses is that their genomes are extremely small, ranging from only approximately 2500 nt (with the mitochondrial mitoviruses the smallest) to approximately 31 500 nt (with the mammalian coronaviruses the largest), and with a mean size of approximately 10 000 nt. In contrast, the genome sizes of DNA viruses range from less than 2000 nt for the circoviruses, a group of ssDNA viruses, to an incredible 1 181 404 nt (and over 1000 genes) for the dsDNA mimivirus of amoeba (La Scola et al. 2003). Throughout this book I will argue that despite their reliance on DNA-based replication, and even on host DNA polymerases, from an evolutionary perspective ssDNA viruses like circoviruses can effectively be considered as RNA viruses.

The strong constraints on genome size in RNA viruses (which are discussed in more detail in Chapter 5) also mean that they have to adopt a variety of strategies to maximize the amount phenotypic diversity that can be encoded by a small number of nucleotides. This can be thought of as small-genome dynamics. In particular, RNA viruses (as well as a variety of small DNA viruses) commonly express multiple proteins from a single gene sequence. This can be achieved through making a single, large polyprotein and subsequently cleaving this into many smaller proteins, alternative splicing, or via overlapping reading frames, in which multiple proteins are encoded by the same nucleotide sequence. It is also worth noting here that some RNA viruses employ partial genomic copies, known as subgenomic RNAs, as a means of expressing downstream open reading frames (ORFs). The control of gene expression, which I will argue is one of the most fundamental challenges facing RNA viruses and may be responsible for the evolution of major genomic characteristics including segmentation, is explored in Chapter 5.

In many ways viruses do little more than replicate, and differences in how this process occurs have been used as the basis for virus classification (Baltimore 1971). The replication process in RNA viruses involves one of two specific enzymes (Table 1.1). For ‘true’ RNA viruses, in which an RNA template is used to produce an RNA copy of the genome, the enzyme RNA-dependent RNA polymerase (RdRp; and sometimes known as an RNA replicase) is utilized. This enzyme is of major evolutionary significance because it is notoriously error-prone, lacking any proofreading or
repair, thereby generating the extensive genetic variation that serves to characterize RNA viruses. For retroviruses, as well as a number of smaller viral families (notably hepadnaviruses and caulimoviruses which are usually classed as small DNA viruses), a DNA copy of the genome is produced from an RNA template through the use of a RNA-dependent DNA polymerase (RdDp), also known as reverse transcriptase (RT). Like RdRp, RT lacks both proofreading and repair and is therefore subject to abundant mutation. The error rates associated with RdRp and RT are discussed in more detail in section 3.1. Finally, it is also important to recall that because retroviruses integrate into cellular genomes they are also replicated by cellular DNA polymerases. However, because these cellular replication enzymes are of much higher fidelity than either RdRp or RT, with mutation rates some orders of magnitude lower, they do not contribute significantly to viral evolution.

The polymerases are also of note because they represent the only type of protein that all RNA viruses and retroviruses have in common. Indeed, the presence of an RdRp is one of the defining features of RNA viruses and, as such, one of the few characters that can be used to infer their deep phylogenetic relationships (although in Chapter 2 I argue that this exercise has been largely unsuccessful). The only other protein carried by most RNA viruses is the capsid, comprising the protein coat (shell) that surrounds, and so protects, the nucleic acid, although even this is absent from the tiny mitoviruses. The complex of capsid and RNA is often referred to as the nucleocapsid, while the mature viral particle is termed the virion. A number of RNA viruses, including many that are important players in this book (dengue, HIV, influenza A virus), possess virions with an additional outer envelope that contains part of the host cell lipid membrane acquired when they bud from (i.e. exit) the cell, as well as associated sugar-coated glycoproteins. Interestingly, viruses with enveloped virions are far more commonly associated with infections of animals than plants. The virion structure of a fairly typical RNA virus— influenza A virus—is shown in Fig. 1.2.

As discussed in detail in Chapter 5, one of the most remarkable aspects of RNA viruses is their diversity of genome organizations (Table 1.1, Fig. 5.3), which surpasses that seen in any other group of organisms and is still not fully understood. Perhaps the most important division, at least historically, is that between positive-sense (or strand) viruses (ssRNA+), in which the genome is arranged as an mRNA molecule, and negative-sense viruses (ssRNA−), in which genomes are complementary to mRNA molecules. A few RNA viruses, such as the arenaviruses, even possess ambisense genomes, comprising both positive- and negative-sense molecules. A smaller number of viruses, such as the diarrhoea-inducing rotaviruses and the emerging bluetongue virus of cattle, possess dsRNA virus genomes.

Although the replication cycles of ssRNA+ and ssRNA− viruses are similar in many ways, for example that it usually takes place in the cell cytoplasm (for eukaryotic viruses), one key difference between them is that the viral RNA in ssRNA+ viruses functions directly as a mRNA, acting as a template for the production of both proteins and more genomic viral RNA (Fig. 1.3). Hence, the naked RNA extracted from virions is infectious, so that ssRNA+ genomes can be translated upon entry
into the cell (although sometimes only partially). The replication cycle of a typical ssRNA+ might therefore be considered as comprising three key steps: (i) translation of the original RNA genome (including the RdRp required for replication), (ii) transcription of a negative-sense RNA strand from the positive-sense template (during which a dsRNA intermediate is made), and (iii) transcription of new positive-sense RNA genomes from these negative-sense molecules (see Regoes et al. 2005 for an elegant quantitative analysis of the dynamics of this process). In contrast, the genome of ssRNA− viruses must first be transcribed into positive-sense genomic material (mRNA) before the replication cycle can proceed, which then continues in a similar manner to that of ssRNA+ viruses. Consequently, the naked RNA extracted from the virions of ssRNA− viruses is not infectious, and a virion-associated RdRp which initially acts a transcriptase must enter the cell at the same time as the ssRNA− genome. Similarly, transcription takes place before translation in the case of dsRNA viruses, so that a virion-associated transcriptase is also required on cell entry, although mRNA is usually synthesized from one template strand only (conservative replication). The replication of retroviruses, such as HIV, is different again. In this case the RNA genome is replicated using RT to produce dsDNA that is then translocated into the

![Diagram of influenza A virus virion structure](image-url)
1.3 The basics of viral biology

1.3.3 Exploring the virosphere

Finally, before continuing, it is essential to remember that many of the ideas presented in this book relate to our current knowledge of the biodiversity of RNA viruses. For example, my discussion on the evolutionary processes that explain why all RNA viruses have genomes of less than 32 000 nt in length obviously assumes that no larger RNA viruses exist in nature. However, given the now intensive efforts to better...
describe viral biodiversity, particularly using the new techniques of metagenomics to explore marine environments (Angly et al. 2006; Culley et al. 2003, 2006), human faecal samples (Zhang et al. 2006; Finkbeiner et al. 2008), or even bee hives (Cox-Foster et al. 2007), it is likely that new, and perhaps very different, RNA viruses will be discovered in the near future. As a direct analogy, the discovery of the mimivirus of algae (Raoult et al. 2004), with their huge genomes, and more recently of the small dsDNA viral parasites (so-called virophage) of these giant viruses (La Scola et al. 2008), has greatly changed concepts of DNA virus evolution (and even what constitutes a virus) and likely came as a surprise to many working in this area. To make the same point in a more quantitative manner, it has been estimated that there are approximately 10 bacteriophage for each of the approximately 10^{30} bacteria on Earth, such that there are approximately 10^{31} bacteriophage (Hendrix et al. 1999). Bacteriophage may therefore constitute the most abundant source of DNA on the planet, although only a small fraction of these organisms have been described to date. In short, we have only just begun to explore the virosphere.
The origins of RNA viruses

2.1 Introduction

Of all the issues in RNA virus evolution, and of all those covered in this book, inferring the origins and deep phylogenetic relationships of RNA viruses has proven the most difficult to resolve. This is an extremely frustrating state of affairs as understanding how viruses originated, and how they relate to cellular organisms, is one of the most interesting topics in evolutionary biology, with the potential to shed light on key moments in the early history of life on Earth. Indeed, to some evolutionary biologists viruses have played a central role in the establishment of complex living systems on Earth (although more so for DNA than RNA viruses; Bell 2001; Forterre 2005; Koonin et al. 2006; Prangishvili et al. 2006).

2.1.1 The perils of deep viral phylogeny

Phylogeny provides an obvious means to get a handle on viral origins. However, inferring the phylogenetic relationships among divergent RNA viruses has been extremely troublesome. There are three particular difficulties here. First, RNA viruses lack any kind of fossil record. At the time of writing, the oldest indisputable sequence of an RNA virus is that of influenza A preserved from the devastating pandemic of 1918 (Taubenberger et al. 1997) (the provenance of an earlier sampled avian influenza virus—A/chicken/Brescia/1902—is unclear). Convincing claims of sequences of simian T-cell leukaemia virus (STLV) recovered from samples collected in 1913 have also recently been made (Calvignac et al. 2008). Whereas the rapid rate of RNA virus evolution means that the genetic diversity observed over a 90-year time span would translate into roughly 90 million years of eukaryote evolution, this is still a very narrow window of evolutionary time, roughly equivalent to the history of the eutherian mammals. Although there have been assertions that RNA has been isolated and sequenced from older viruses, most notably human T-cell leukaemia virus (HTLV-I) from an Andean mummy (Li et al. 1999; Sonoda et al. 2000), these have not received widespread acceptance because of the failure to conclusively exclude contamination. Similarly, although it is clear that RNA viruses have been a burden on human health for millennia, the symptoms of individual viruses are often non-diagnostic, making it impossible, in all but a few cases, to determine which pathogen is the agent of a specific infection (although in others, such as rabies or polio, symptoms are more specific so that historical records provide a useful glimpse into evolutionary history).
The lack of an effective fossil record means that it is impossible to determine when RNA viruses have definitely existed in the past, or to use fossil sampling times as calibration points to date viral evolution.

A second major limitation of studies of the deep evolutionary history of RNA viruses is that their rapid rates of nucleotide substitution ensure that phylogenetic signal is eroded very quickly. For example, an average evolutionary rate of approximately 10^{-3} nucleotide substitutions per site, per year (subs/site/year) (section 3.1) obviously means that every nucleotide site will have fixed an average of one mutation every 10^3 years. Although nonsynonymous sites will usually evolve much more slowly, a mean evolutionary rate of, say, approximately 10^{-5} subs/site/year will mean that every nonsynonymous site changes on average once every 10^5 years. Even allowing for the most complex models of nucleotide substitution, as well as major selective constraints on some amino acid sites, it is evident that detailed evolutionary histories that span many millions of years will not be recoverable through an analysis of viral gene sequences, and to expect sequences that perhaps diverged close to life’s origin to contain coherent phylogenetic information is fantasy. As such, it cannot be expected that phylogenies inferred from gene sequence data alone will provide many meaningful insights into the origin and early evolution of RNA viruses. As discussed later in this chapter, the most profitable way to infer these deep evolutionary histories may therefore be through the study of protein structure.

The final hurdle facing those wishing to reconstruct the origins of RNA viruses is that the shuffling of genes by recombination and reassortment means that there may not be a single evolutionary history that can be retraced using phylogenetic methods. Although it is still unclear how often such ‘lateral’ processes have occurred among divergent RNA viruses (see Chapter 5 for a detailed discussion), they are likely to have taken place with at least sufficient frequency that they need to be considered when undertaking any deep phylogenetic study.

2.2 Theories for the origin of RNA viruses

Despite the inherent difficulties in reconstructing the past, a number of important theories for the origins of RNA viruses have been proposed. The difficulty is not so much in generating a theory for the ancestry of RNA viruses, but acquiring sufficient data to test it. As such, all theories for viral origins currently fall into the category of untested hypotheses, and in some cases are little more than educated speculation.

Traditionally, three theories have been proposed for the origins of RNA viruses (Fig. 2.1; see Morse 1994 for an interesting historical review), although sometimes with extensions and modifications (Bândea 1983; Hendrix et al. 2000). These theories are: (i) the regressive evolution theory, which postulates that the ancestry of RNA viruses lies with cellular organisms, most probably bacteria, that have so effectively parasitized their hosts that they have been able to gradually off-load their own genes until they become the far ‘simpler’ organisms we see today as viruses; (ii) the escaped gene theory, that RNA viruses are descendants of escaped host
2.2 Theories of origin

- 17 cellular genes which acquired protective protein coats and the ability to replicate autonomously; and (iii) the pre-cellular life theory, that RNA viruses are descend-
ants of pre-cellular RNA life forms, with ancestries dating back billions of years, and so adopted their parasitic lifestyle later in evolutionary time. Although these theories apply equally to DNA viruses, a fact that should not be forgotten in reading what follows (particularly as theories for the origins of DNA viruses are perhaps better formulated; Prangishvili et al. 2006), I will necessarily concentrate my dis-
cussion on RNA viruses.

2.2.1 The regressive origin theory

Of the theories of viral origins, the idea that RNA viruses are ‘regressed’ cellular organisms is perhaps the easiest to dismiss. On the one hand, it is clear that some cellular species, particularly endosymbiotic bacteria which have an extremely intim-
ate relationship with their hosts, have been able to streamline their genomes by discarding those genes whose functions can be provided by the host (Moran 2002). A good example is provided by the Buchnera species of bacteria that infect various species of aphids, and which may have discarded more than 70% of their genome.

Fig. 2.1 Competing theories for the origins of RNA viruses. (a) The regressive evolution theory, now largely out of favour; (b) the escaped gene theory, and (c) the pre-cellular origin theory, in which RNA viruses evolve from the first RNA or RNA-protein systems. In each case cells are represented by rounded rectangles, and the simplest virus is thought to comprise only replicase (R) and capsid (C) genes.

(c) Pre-cellular origin

RNA world

Discarded genes

Cellular genome

(a) Regressive evolution

(b) Escaped host gene

R C

R C

R C

R C

R C

R C

(a) Regressive evolution (b) Escaped host gene (c) Pre-cellular origin

Fig. 2.1 Competing theories for the origins of RNA viruses. (a) The regressive evolution theory, now largely out of favour; (b) the escaped gene theory, and (c) the pre-cellular origin theory, in which RNA viruses evolve from the first RNA or RNA-protein systems. In each case cells are represented by rounded rectangles, and the simplest virus is thought to comprise only replicase (R) and capsid (C) genes.

(c) Pre-cellular origin

RNA world

Discarded genes

Cellular genome

(a) Regressive evolution

(b) Escaped host gene

R C

R C

R C

R C

R C

R C

(a) Regressive evolution (b) Escaped host gene (c) Pre-cellular origin

Fig. 2.1 Competing theories for the origins of RNA viruses. (a) The regressive evolution theory, now largely out of favour; (b) the escaped gene theory, and (c) the pre-cellular origin theory, in which RNA viruses evolve from the first RNA or RNA-protein systems. In each case cells are represented by rounded rectangles, and the simplest virus is thought to comprise only replicase (R) and capsid (C) genes.
The origins of RNA viruses

(Moran and Mira 2001). In some sense, Buchnera have therefore experienced a regressive evolution into a simpler form, although an interesting twist in this tale is that reduced genome size is associated with an increased rate of deleterious mutation (Moran 1996) and the deployment of chaperone systems to correct defective proteins (Fares et al. 2002). More importantly, Buchnera are still very much bacteria. Another much-quoted example is provided by the Chlamydiae, a group of intracellular bacteria that have no cell wall, and there have been more recent suggestions that the giant mimivirus has regressive origins (Claverie 2006), although this remains to be formally tested.

Despite the regressive evolution observed in some bacteria, there is currently no evidence that this process is responsible for the origin of RNA viruses. In particular, the gene contents of RNA viruses and cellular species differ fundamentally, whereas the regressive theory would predict at least some—if not all—of the genes observed in RNA viruses to have their ancestries in cellular genomes. In addition, it is difficult to imagine how regressive evolution would result in an organism that has to infect new hosts to ensure its persistence (i.e. RNA viruses), rather than those that are inherited vertically along with the host, as is the case with Buchnera. Finally, as RNA viruses seem to be genome size limited because of the fitness costs associated with excessive mutational loads (see sections 3.1 and 5.1), it is unclear how they could have previously existed with larger genomes in a non-regressed state and still utilize an error-prone RNA polymerase. It is therefore no surprise that the regressive theory has generally fallen out of favour.

2.2.2 RNA viruses as escaped genes

The second major theory for the origin of RNA viruses is that they are ‘escaped’ cellular genes—most probably mRNA molecules—that acquired both the ability to self-replicate and the protective protein coats that allowed them to exist independently of cells. Hence, the escaped gene theory proposes that both RNA and DNA viruses existed after the first cellular organisms, so that this may be considered a ‘post-cellular’ theory of viral origins (although it is still likely that at least some of these escape events occurred during the early days of life on Earth). In its earliest formulations this theory was used to suggest that eukaryotic viruses originated in eukaryotic genomes, while bacteria were the progenitors of bacteriophage (reviewed in Prangishivili et al. 2006). However, I will take a broader perspective and assign any evidence for a cellular species giving rise to a virus as supportive of the escaped gene hypothesis. Until relatively recently this was also widely regarded as the most likely theory of viral origins (Morse 1994).

Whatever the timescale of gene escape, a fundamental prediction of this theory is that virus genes, including the diagnostic RdRp, should ultimately have their ancestries in cellular genomes. In addition, because such escape events could have occurred multiple times, it is not necessarily the case that RNA viruses, or indeed any class of virus, are monophyletic. Hence, it is possible that each major category of virus—RNA, DNA, retrovirus—has unique ancestries in cellular genes, and/or that different
2.2 Theories of origin

• Theories of origin

19 types of RNA virus—ssRNA+, ssRNA−, dsRNA—likewise represent independent escapes from host cells. As a consequence, the demonstration of a deep common ancestry of all viruses would be considered as strong evidence against the escaped gene theory; this theory can only explain the existence of similar traits among divergent viruses, such as the presence of jelly-roll capsid proteins or the palm subdomain of RNA and DNA polymerases (see below), through either extensive convergent evolution or LGT.

The attraction of the escaped gene hypothesis is that it can, in principle, explain the origins of all types of virus, which differ so fundamentally in their genome structures, simply by postulating multiple escape events. For example, ssRNA+ viruses would be descended from escaped cellular mRNA molecules that either possessed or acquired RNA polymerase activity, while retroviruses could be descended from the long terminal repeat (LTR) retrotransposons that are a common component of eukaryote genomes and which encode RT. Similarly, DNA viruses could be descended from DNA transposable elements, or perhaps the genes resident in bacterial plasmids. Indeed, the polymerases of the ssRNA+ and ssRNA− viruses have such different functions that their independent origin seems a reasonable hypothesis (Baltimore 1980).

That mRNA molecules continually pass through the nuclear envelope on their way to the ribosomes indicates that the escaped gene theory is at least mechanistically possible, and a recent and highly compelling analysis of HDV shows that a new ‘virus’ has been produced by host gene escape at least once in evolutionary history (see below). Two additional pieces of evidence have been put forward in support of the escaped gene theory. The first, and the most simplistic, is that as viruses are currently obligate parasites that rely on host cells for replication, they could never have existed outside of these cells. The second is that despite a number of attempts it has not been possible to use gene sequence data to show, unequivocally, that RNA viruses are monophyletic. Similarly, a recent parsimony-based phylogenetic analysis of tRNAs suggested that although DNA viruses can be considered ‘ancient’, their origin was subsequent, rather than prior, to that of archaeabacteria (Sun and Caetano-Anollés 2008). Unfortunately, the absence of tRNAs in RNA viruses means that they cannot be included in analyses of this type.

The notion that their parasitic nature means that RNA viruses must have evolved after host cells is easy to dismiss. It is now commonly believed that the first replicating molecules on Earth were composed of RNA—in what is known as the RNA world—an idea that first surfaced in the late 1960s (see Joyce 2002 for an excellent review of this concept). It is therefore not a difficult intellectual leap to think that extant RNA viruses could have their origins with these putative ancient RNA replicators. Indeed, this is basis of the pre-cellular theory.

The idea that there is, as yet, no clear monophyletic relationship of all RNA viruses, let alone all viruses, is also rather unconvincing. As is discussed in more detail below, the key issue here is distinguishing firm evidence against a monophyletic origin from a simple lack of phylogenetic signal. While the latter is easy to show, the former is far more challenging. Although it is undoubtedly the case that there is nothing in the
The origins of RNA viruses

Phylogenetic analysis of viral gene sequences that unequivocally supports their monophyly, remnants of deep evolutionary relationships may be more apparent in other types of data, most notably protein structures. The potential for protein structure to shed light on the deep phylogenetic relationships of RNA viruses is discussed in section 2.3.

Until very recently there was also strong evidence against the escaped gene hypothesis in that no cellular gene was known to possess RdRp activity, although under this theory the RdRp must have a cellular origin. However, it has now been shown that cellular DNA polymerase (Pol) II, which catalyses the synthesis of RNA from DNA, also has RdRp activity (Lehmann et al. 2007). Pol II had previously been proposed as the agent of replication in viroids, which unlike RNA viruses possess no RNA polymerase (Lai 2005). This remarkable discovery removes one major barrier to the theory that RNA viruses might be escaped cellular genes. However, it is equally likely that the RdRp activity of Pol II evolved before its role in DNA transcription, and there is as yet no evidence that cellular Pol II and viral RdRp are homologous. Shortly, I will argue that a consideration of the mutational loads faced by RNA viruses also provides evidence against the escaped gene theory.

2.2.3 RNA viruses and the RNA world

The final, and perhaps currently the most popular, theory for the origin of RNA viruses is that they represent the modern descendants of an RNA world that is generally thought to have existed before the advent of higher-fidelity DNA-based replication (Gilbert 1986; Szathmáry and Demeter 1987). Similarly, extant DNA viruses could be remnants of the first DNA replicators, while the retroviruses (and other retrotranscribing elements) could be descendants of the first molecules that were able to make the transition between RNA and DNA. Because they are proposed to have arisen in a common environment before the advent of cellular organisms, and may therefore have shared specific genes, a direct phylogenetic link between RNA, DNA and retroviruses would serve as strong evidence for the pre-cellular theory.

There are a number of pieces of evidence for the pre-cellular theory, although as ever in discussions of viral origins the data are scant at best and can often be interpreted in different ways. First, and most obvious, the reliance on RNA for replication automatically connects modern day RNA viruses and the ancient RNA world (although the production of proteins must have also occurred before the origin of the first true RNA virus). Although necessarily hypothetical, the notion of an RNA world is a hugely compelling one, representing a key moment in evolutionary history between the formation of the Earth some 4.5 billion years ago and the appearance of the first fossils at approximately 3.5 billion years ago. As these first fossils are also relatively complex, it is clear that the preceding billion years of Earth’s history were the scene of some major evolutionary transitions, the occurrence of which has not been recorded in the fossil record. To some, modern day RNA viruses, and their simpler relatives the viroids, provide a unique insight into these ancient evolutionary events.

The most direct evidence for the existence of the RNA world was the discovery of catalytic RNA molecules known as ribozymes (Kruger et al. 1982; Cech 1987).
These are small, naturally occurring RNA molecules that include the hammerhead ribozyme found in some viroids, the HDV ribozyme, and the Neurospora Varkud satellite motif (Fig. 2.2). Ribozymes are of immense biochemical interest because of their involvement in such basic cellular processes as mRNA processing and protein synthesis. It is reasonable to think that the earliest replicators on Earth existed as a form of ribozyme, and that these were also the progenitors of RNA viruses. Indeed, Manfred Eigen’s seminal work on early replication systems implies that ribozymes may have set in motion the process of evolution by natural selection, as
this can be considered a predictable outcome of self-replication (summarized in Eigen 1992).

Because of their complex secondary structures, lack of protein-coding regions, and most importantly their ribozyme functions, viroids represent potentially good candidates for remnants of the earliest life forms that occupied the RNA world (Fig. 2.2) (Elena et al. 1991) and have recently been demonstrated to possess extremely high mutation rates (Gago et al. 2009). Yet while it is undoubtedly the case that viroids have a remarkably simple structure, their sequences are also so divergent from those of other organisms to make it very difficult, if not impossible, to accurately infer their origins (Jenkins et al. 2000). Again, this lack of phylogenetic signal does not necessary mean that viroids are more recently evolved infectious agents, but rather that it is impossible to use sequence-based phylogenies alone to argue for their antiquity. However, on current data, it seems equally plausible that viroids represent recently escaped host genes or introns which have not yet acquired protein coats, especially as they are only seen in plants, when an origin in the RNA world might predict a far wider taxonomic distribution. Indeed, it is also intriguing that viroids replicate using host cellular DNA Pol II (Lai 2005). Such a reliance on host polymerases for replication strongly suggests that their ultimate origin lies with cellular genomes. A dramatic proof of this principle was the observation that the HDV ribozyme is related to the CPEB3 ribozyme present in a human intron sequence (Salehi-Ashtiani et al. 2006). That HDV is only found in humans and requires human hepatitis B virus (HBV) to replicate is powerful evidence that its origins lie in the human transcriptome (Salehi-Ashtiani et al. 2006). Although HDV cannot be considered a ‘true’ virus, its genesis clearly illustrates how host genomic DNA can escape to form an exogenous replicating agent.

2.2.4 Eigen’s paradox

Because of the very deep timescales involved and the invocation of the RNA world, understanding the origin of RNA viruses automatically impacts on some of the most fundamental questions in evolution; how to produce the first polymers, how to generate the first replicating molecule, how to make the first cell? Perhaps a more generic problem, and one of special relevance to the study of RNA virus evolution, is how a simple replicating system can evolve increased genotypic, and hence phenotypic, complexity? Although the RNA world is an attractive focus for many of these questions, the reliance on RNA replication comes at a cost: critically, compared to DNA, the copying of RNA is highly error-prone. As discussed in detail below this, in turn, imposes an upper limit on the size of primitive RNA replicators, as overly large RNA molecules will be unable to copy themselves with sufficient fidelity to maintain fitness. It is this phenomenon that also likely explains the highly restricted size of the ribozymes we know today. Although this idea is often discussed in the context of an ‘error threshold’ (Maynard Smith and Szathmáry 1995), in reality a strict threshold, in the form of a critical value, requires a single-peaked fitness function which may be a poor description of the natural situation (Wiehe 1997). However, irrespective of the precise fitness function evolved, to create greater genetic complexity it is clearly
necessary to encode more information in longer genomes by using a replication system with greater fidelity. Unfortunately, there is a serious problem with this idea: to replicate with greater fidelity requires a more accurate and hence complex replication enzyme, but such an enzyme cannot be created because this will itself require a longer genome, and longer genomes will breach any error threshold (Maynard Smith and Szathmáry 1995). This evolutionary chicken-and-egg situation has been called ‘Eigen’s paradox’ and represents one of the most intractable puzzles in the origin of life. It is also fundamental for understanding the origins of viruses, for while current ribozymes are tens of nucleotides in length, the smallest RNA viruses possess genomes of several thousand nucleotides.

How, then, is it possible to increase the genomic complexity of an RNA replicator by an order of magnitude without enduring a mutational meltdown? The answer may lie with RNA secondary structures, and the complex fitness landscapes they enforce, which reduce the impact of deleterious mutations. This results in a certain level of mutational ‘robustness’: a constancy of phenotype in the face of frequent mutation (see section 3.1 for a more detailed discussion; Sanjuán et al. 2006a, 2006b). This results in a ‘relaxed error threshold’ that buffers genomes against mutation pressure and allows the key evolutionary transition from ribozyme-like to virus-like genomic complexity (Kun et al. 2005) (Fig. 2.3). However, the genome sizes of RNA viruses are still very much smaller than either the tiniest cellular life forms

![Fig. 2.3](image-url) Error thresholds and the evolution of genomic complexity, based on the theory of Kun et al. (2005). For evolution to proceed in the RNA world a reduction in the error rate (μ) to approximately 0.001 mutations per nucleotide, per genome replication is required. For more complex genomes to evolve, with sizes greater than 10^4 nucleotides, a second threshold needs to be crossed with $\mu << 0.001$. This necessitates the evolution of higher-fidelity DNA replication. Neutral and compensatory mutations tend to dampen the effects of deleterious mutations, allowing a so-called relaxed error threshold (i.e. adding robustness). Adapted from Holmes (2005) with permission.
known today, or that estimated for the last universal common ancestor (Szathmáry 2005). Consequently, although most RNA viruses are larger and more complex than ribozymes, and have greater copying fidelity (Gago et al. 2009), they are also at the mercy of excessive mutational loads, which in turn limits their genome size to levels far lower than those seen in most DNA-based organisms. The question then becomes how to move from the genome sizes of RNA viruses to those of more complex life forms? The answer, of course, involves the evolution of DNA replication and its capacity for error correction. Sadly, exploring this major evolutionary transition is beyond the scope of this book. However, the idea that the upper limit on the genome sizes of RNA viruses is determined by their background mutation rate is also generally supportive of the pre-cellular theory of their origins, because if RNA viruses represent escaped transcripts of DNA Pol II we might expect them to be both less error-prone and longer than contemporary RNA viruses.

2.2.5 The taxonomic distribution of RNA viruses

A second piece of evidence cited for the deep antiquity of RNA viruses is that these infectious agents have an expansive taxonomic distribution, and have been described in a wide variety of branches from the tree of cellular life. As noted above, the major exception is the archaebacteria, which could be argued to support an origin of RNA viruses subsequent to the origin of Archaea. However, given the evidence for LGT at the base of the tree of life (Brown 2003), it is difficult to believe that an RNA virus would not, at some stage in evolutionary history, have moved between bacteria and/or eukaryotes and archaebacteria. As such, the absence of RNA viruses in Archaea more likely reflects the lack of sufficiently intensive sampling in these taxa (although temperature constraints may reduce the frequency of RNA viruses in hyperthermophiles; Zeldovich et al. 2007). In a similar manner, the vagaries of sampling, rather than a more recent origin, are also the most likely explanation for other major ‘gaps’ in the taxonomic distribution of viruses, such as the lack of ssRNA− viruses in bacteria, fungi, and unicellular eukaryotes, and the absence of retroviruses in bacteria. That such major gaps in viral biodiversity exist further highlights the need for more widespread sampling of viruses from a diverse range of habitats.

In some cases it has been possible to use the match between the phylogenies of viruses and their hosts—so-called co-divergence (or co-speciation)—to discuss the timespan of viral evolution in more concrete terms. Because of the rapid erosion of phylogenetic signal in RNA viruses, these studies have proven far more successful in the case of DNA viruses: to date, the oldest example of co-divergence in an RNA virus is that of the retrovirus simian foamy virus (SFV) that may have been associated with non-human primates for 30–40 million years (Switzer et al. 2005) (the debatable case of the plant tobamoviruses is discussed in section 3.1). Humans are an interesting exception to the rule of co-divergence in SFV as in this case the virus always represents a spill-over from other animals (Wolfe et al. 2004). In contrast, for DNA viruses such as herpesviruses, virus/host co-divergence may extend for up to 400 million years (McGeoch and Gatherer 2005), whereas insect baculoviruses may have established
2.2 Theories of origin

ancient associations with arthropods (Herniou et al. 2004). However, although these co-divergence studies provide a useful perspective on the timescale of viral evolution, they are still far too recent to inform on the origin of either RNA or DNA viruses. Although icosahedral dsDNA viruses are found in all three domains of life (Maaty et al. 2006; Ortmann et al. 2006), which implies that their common ancestor is at least this old, rigorous phylogenetic analyses of these diverse viruses have yet to be undertaken and are likely to represent a major challenge given the necessity to utilize protein secondary structure (section 2.2). An even more remarkable example of deep evolutionary ancestry concerns the giant mimiviruses of amoeba, a discovery that rejuvenated studies of DNA virus origins (Raoult et al. 2004; Claverie 2006). In this case phylogenetic analysis placed mimivirus in a position—approximately that of a divergent eukaryote—expected of its amoebae hosts, and relatively close to the major T junction of archaeabacteria, bacteria, and eukaryotes. However, the lack of basal eukaryotes in these studies make all phylogenetic trees extremely difficult to interpret and it is impossible to entirely exclude some role for host gene escape. More generally, it is striking that individual RNA virus families rarely contain taxa that infect widely different host species. For example, no family of RNA viruses is known to infect both bacteria and eukaryotes, and few viral families infect hosts as divergent as animals and plants (with the families Bunyaviridae, Rhabdoviridae, and Reoviridae being notable exceptions), although jumps of viruses from plants to animals have been proposed (Gibbs and Weiler 1999). The general separation of plant and animal viruses is likely to reflect the specific adaptations required to infect these very different host types, with the major difference in the structure of the cell wall perhaps prominent among these (Gibbs et al. 2008a).

2.2.6 Conserved protein structures

By far the most compelling evidence for the pre-cellular theory of viral origins is that RNA viruses contain a set of genes—or more precisely protein structures—that are not found in cellular species. These have been termed hallmark genes by Eugene Koonin, and their existence provides a powerful argument for the common ancestry of RNA viruses. Even more dramatic are suggestions that some of these hallmark genes are found in both RNA and DNA viruses, and are therefore potentially indicative of the common ancestry of all viruses (Bensen et al. 2004; Bamford et al. 2005; Koonin et al. 2006). If upheld, this would represent extremely strong evidence for the pre-cellular theory. Because these highly divergent genes possess almost no primary sequence similarity, all realistic analyses must be based on protein secondary structure. This will be discussed in more detail in section 2.2.

The most important of these genes for RNA viruses is the RdRp, where similarities among highly divergent RNA viruses, and even between RdRp and the RTs found in retroviruses, can be seen in the presence of a small number of conserved sequence motifs and protein structures (Poch et al. 1989; Koonin 1991; Goldbach and de Haan 1994). Remarkably, a palm subdomain protein structure, comprising a four-stranded antiparallel β-sheet and two α-helices, is conserved among some
RNA-dependent and DNA-dependent polymerases, and which represents a powerful argument for its great antiquity (Gorbalenya et al. 2002). More refined analyses have revealed that two lineages of the palm subdomain exist, representing two distinct protein structures (canonical and non-canonical), and which are also thought to reflect an ancient separation (Gorbalenya et al. 2002; Garriga et al. 2007). Finally, in the case of RT, it is striking that patterns of sequence (and structural) similarity are also able to link retroviruses, hepadnaviruses, and caulimoviruses with the cellular ‘genes’ that utilize RT, such as retroelements, group II introns, and telomerase (Eickbush 1994; Malik et al. 1999; Chang et al. 2008). However, determining the position of the root of the RT tree, which is critical for choosing among competing theories of viral origin, is extremely difficult (Eickbush 1997).

 Understandably, most attention has been directed towards those genes that are reportedly shared between RNA and DNA viruses, and which have had a major impact on theories of viral origin (Bamford et al. 2005; Jalasvuori and Bamford 2008). Three genes/structures fall into this class: (i) the so-called jelly-roll capsid (JRC) (Fig. 2.4), a tightly structured protein barrel that represents the major capsid subunit of (non-enveloped) virions with an icosahedral structure (Rossmann et al. 1985; Coulibaly et al. 2005), and which is found in viruses as diverse as picornaviruses (ssRNA+), birnaviruses (dsRNA), herpesviruses (dsDNA), and Sulfolobus turreted icosahedral virus (a dsDNA virus of archaebacteria; Maaty et al. 2006), (ii) the Superfamily 3 helicase (S3H) which is involved in the initiation and elongation of genome replication (Koonin et al. 2006), and (iii) the palm subdomain of RNA and DNA polymerases. Their combined discovery has led Eugene Koonin to propose the existence of an ‘ancient virus world’: a primordial viral gene pool that marked a key

![Fig. 2.4](image-url)
(a) The canonical jelly-roll protein structure contains eight β-sheets (B, C, D, E, F, G, H, I) and two α-helices. Taken from Le Gall (2008) with permission. (b) The VP2 protein of human rhinovirus 14 showing the distinctive jelly-roll. Similar structures are found in the VP1 and VP3 proteins of picornaviruses. Adapted from Rossmann et al. (1985).
transition between the RNA world and the evolution of cellular species (Koonin et al. 2006) (Fig. 2.5). According to Koonin, the phrase gene pool is a perfect description for the ancient virus world, as there was extensive mixing of genes between viruses of very different types (RNA, DNA, retroviruses), so that we would not expect each type of virus to be strictly monophyletic (Koonin et al. 2006).

Fig. 2.5 Theory of the ‘ancient virus world’ developed by Eugene Koonin. The proposed major stages in evolution are shown along with the replicators, including viruses, present during each stage. Under this model RNA viruses have a pre-cellular origin. More details are available in the original publication. RCR denotes viruses that utilize rolling cycle replication. Taken from Koonin et al. (2006) with permission.
While the discovery of conserved protein structures in diverse viral species is a hugely important one in discussions of viral origins, it comes with a major caveat: it is currently impossible to rule out that highly similar protein structures, such as JRCs and palm subdomains, could not have arisen through convergent evolution. If true, they would tell us little about evolutionary history and viral origins, although a great deal about selective constraints and adaptation. Convergent (and parallel) evolution is a relatively common occurrence in molecular evolution and may be particularly frequent in viruses because of the major constraint on their genome (and hence) protein sizes (see Bull et al. 1997 and Cuevas et al. 2002 for two illustrative experimental examples). Although the convergent evolution of protein structures appears to be less common than that of function (Gough 2005), clear-cut examples exist (Hamburger et al. 1999). In short, the evolutionary dynamics of organisms with small genomes may mean that even complex protein structures can evolve more than once. Although convergent evolution may seem like an implausible explanation for protein structures that look so similar, it is important to recall that not all icosahedral RNA viruses possess JRCs. Likewise, similar surface glycoprotein structures are observed in some DNA and RNA viruses (Heldwein et al. 2006) which, given their patchy distribution across the virus world and usually rapid evolution, is more difficult to explain through common ancestry. Further, convergence is rampant in some evolutionary systems: for example, the C₄ photosynthetic pathway has evolved independently over 45 times in angiosperms (Sage 2004). However, the more often convergent evolution needs to be invoked, and the more divergent the taxa that carry the same structure, the less plausible an evolutionary process it becomes.

If a summary is possible, based on current data that are admittedly scarce, the pre-cellular theory appears the most plausible account of viral origins. The caveat of possible convergent evolution notwithstanding, Eugene Koonin’s notion of an ancient virus world, an evolutionary gumbo that cooked before the first cells, neatly explains many of patterns of gene sharing among highly diverse taxa. Perhaps for the first time the virus world is beginning to look cohesive. In addition, that RNA viruses are still very much at the mercy of their mutation rates further argues that they evolved from primitive RNA replicators that never possessed error-correction, rather than from higher-fidelity cellular polymerases. However, perhaps the strongest conclusion to be drawn from this discussion is that for the study of viral origins to move beyond the speculative to a science based on testable hypotheses, it is critical to develop new computational methods that are able to detect significant similarities—those truly indicative of common ancestry—among highly divergent protein sequences, and then turn these patterns of sequence and structural similarity into robust phylogenetic trees.

2.3 Deep phylogenetic relationships among RNA viruses

The lack of progress in understanding the origins of RNA viruses is mirrored in the difficulties in trying to infer their deep—inter-family—phylogenetic relationships and to devise higher-order classification schemes. Again, the major limitation
2.3 Deep phylogenetic relationships

• is that phylogenetic inference based on sequence data alone is severely compromised by the highly divergent nature of the sequences in question. As a consequence, this problem is also more serious for RNA than DNA viruses. In the latter, phylogenetic studies have revealed deep evolutionary relationships among the sequences of DNA polymerases present in both cellular organisms and viruses, although doubts remain over the position of the root and even the monophyly of some groups of DNA virus (reviewed in Shackelton and Holmes 2004).

2.3.1 The ‘higher-order’ relationships of RNA viruses

There have been a variety of attempts to infer the inter-family phylogenetic relationships of RNA viruses, all necessarily based on the analysis of RdRp sequences. Such phylogenetic studies are prompted by multiple alignments which indicate that there are up to eight very short amino acid motifs that are conserved across all known RdRps (Poch et al. 1989; Koonin 1991; Koonin and Dolja 1993; Goldbach and de Haan 1994). The most famous of these motifs is Gly-Asp-Asp (GDD) and its variants, located within the conserved palm subdomain structure (Gorbalenya et al. 2002). Phylogenetic trees of sequence alignments centred around these conserved motifs have been used to construct higher-order classification schemes for RNA viruses, involving the delineation of a number of viral ‘supergroups’. The earliest studies proposed three such supergroups of ssRNA+ viruses, although each contained viruses with very different genome organizations (Koonin 1991; Koonin and Dolja 1993). For example, the coronaviruses, picornaviruses, and potyviruses were placed together in supergroup I, while the carmoviruses, flaviviruses, and pestiviruses, along with some bacteriophages, were found in supergroup II. Finally, supergroup III contained such diverse infectious agents as alphaviruses and tymoviruses. A later study proposed six supergroups—alpha-like, carmo-like, corona-like, flavi-like, picorna-like, and sobemo-like—each of which contains viruses with broadly similar genome organizations (Goldbach and de Haan 1994) (Fig. 2.6). Other phylogenetic studies have considered the evolutionary relationships between the supergroups of ssRNA+ viruses and the ssRNA− and dsRNA viruses, with a particular focus on trying to determine which group were the first to diverge, although little consensus exists (Bruenn 1991; Koonin and Dolja 1993; Goldbach and de Haan 1994; Vieth et al. 2004). Despite this body of work, few higher-order groupings of RNA viruses are officially recognized by the International Committee on Taxonomy of Viruses (ICTV; Fauquet et al. 2005), namely the order Mononegavirales, a grouping of four families of unsegmented ssRNA− virus—Bornaviridae, Filoviridae, Paramyxoviridae, and Rhabdoviridae—and the Nidovirales, comprising the Arteriviridae, Coronaviridae and Roniviridae families of ssRNA+ viruses. An order Picornavirales, comprising the families Picornaviridae, Comoviridae, Dicistroviridae, Marnaviridae, and Sequiviridae of ssRNA+ viruses, along with some unassigned viral genera, has also been proposed, largely based on shared patterns of genome and capsid organization (Le Gall et al. 2008).

A major reason why the higher-order classifications of RNA viruses have failed to become established, and particularly the notion of viral supergroups, is that their
The origins of RNA viruses

Fig. 2.6 Schematic phylogenetic tree of the proposed ‘supergroups’ of ssRNA+, ssRNA− and dsRNA viruses based on data provided in Goldbach and de Haan (1994). Some of the major genomic properties of the six supergroups of ssRNA+ viruses are given. Note the divergent position of the dsRNA viruses which is highly debated (as is the common ancestry of the ssRNA− viruses). As can be seen in Fig. 2.8 and discussed in the text, this tree should be regarded as speculatory at best.
phyllogenetic support from sequence data is decidedly shaky. It would also be fair to say that most studies of inter-family evolutionary relationships have not utilized the most sophisticated methods for either multiple sequence alignment or phylogenetic analysis. Most importantly, a careful analysis of the RdRp sequences of RNA viruses often found no more phylogenetic signal at the inter-family level than expected by chance alone, and even in cases where there was sufficient evolutionary information to infer a meaningful phylogeny the resultant trees generally lacked any statistical support (Zanotto et al. 1996a). This analysis should strike a cautionary note for all those wanting to undertake deep phylogenetic analyses of RNA viruses. However, and at the risk of repetition, the lack of a well-supported phylogenetic tree of RNA viruses does not necessarily mean that these viruses have independent origins, but rather that there is insufficient information in gene sequence data alone to infer a reliable phylogeny. Likewise, although there are clear similarities in genome organization among the members of some of the proposed supergroups—for example, a conserved gene order, 5′ and 3′ structures, and polyprotein processing in the case of the ‘picorna-like’ supergroup (Fig. 2.6), and colinearity among members of the Mononegavirales—and which may well be indicative of common ancestry, it is extremely difficult to draw phylogenetic relationships among the supergroups without an explicit model of how genome organization itself evolves (see below).

Detailed phylogenetic analyses of those sequences with RT activity, such as retroviruses, hepadnaviruses, group II introns, LTR retrotransposons, non-LTR retrotransposons, and telomeras, have been far more informative than those undertaken on RdRp, in large part because RT sequences clearly retain more sequence similarity (Xiong and Eickbush 1990; Eickbush 1994; Malik et al. 1999; Arkhipova et al. 2003; Chang et al. 2008). Specifically, phylogenetic analysis has revealed such common patterns as (i) a major division between the LTR and non-LTR retrotransposons, with retroviruses derived from the former, (ii) that hepadnaviruses and caulimoviruses have independent origins (probably from LTR retrotransposons), and (iii) that the RT elements unique to prokaryotes (group II introns, mitochondrial DNA (mtDNA) plasmids, and ms DNAs) form a monophyletic group (Fig. 2.7). However, determining the order of these events has proven extremely difficult (Eickbush 1997), particularly as the ‘closest’ potential outgroup sequences—the RdRp-utilizing RNA viruses—are so divergent that it is impossible, with current techniques, to unequivocally show that they are related. Indeed, there is so little primary sequence similarity among RdRp and RT sequences—and certainly no more expected than by chance alone—that sequence-based phylogenetic inference becomes a futile exercise at this level (Zanotto et al. 1996a). This leaves us in the highly unsatisfactory situation where it is impossible to distinguish evidence for an independent origin of RNA viruses and retroviruses, as expected under the escaped gene hypothesis, from a null case where there is simply insufficient sequence similarity to perform any phylogenetic test of hypotheses of viral origins.

As should be clear by now, ‘standard’ evolutionary analysis involving multiple sequence alignment followed by phylogenetic reconstruction is clearly insufficient
Fig. 2.7 Phylogenetic tree of 88 RT-containing sequences (retroelements). The tree was generated using the minimum-evolution method from pairwise distances estimated under the Gestalt Domain Detection Algorithm-Basic Local Alignment Tool (GDDA-BLAST) of Chang et al. (2008). Broadly similar phylogenies have been generated using a variety of methods, particularly the division between the LTR and non-LTR retroelements. Despite its orientation, this phylogeny is unrooted. ms DNA, multicopy single-stranded DNA; mtDNA, mitochondrial DNA. Adapted from Chang et al. (2008) with permission.
to accurately infer the higher-order relationships of RNA viruses. Despite these inherent difficulties, it is possible to make some evolutionary inferences from amino acid sequence data, albeit very general ones. One simple way this can be done is through a comparison of pairwise BLAST scores (e-values) of a diverse array of viral proteomes (Fig. 2.8). Although only approximate, this analysis does reveal cases where there is clear sequence similarity among viral families (i.e. more than expected by chance alone; very low e-values), and those where no such homology can be discerned. Interestingly, this analysis reveals no significant sequence similarity between the unsegmented ssRNA− viruses (order Mononegavirales) and the segmented ssRNA− viruses (for example, Arenaviridae, Bunyaviridae, Orthomyxoviridae). While tentative at best, this suggests that these different types of ssRNA− virus are
not closely related, indicative of independent origins, in marked contrast to what is usually assumed in phylogenetic studies. Of course, this begs the bigger question of what forces have acted to favour the evolution of negative-sense genome orientation on more than one occasion? This fascinating question is considered more fully in Chapter 5.

Given the profound limitations in using sequence-based methods to infer the origins and deep phylogenetic relationships of RNA viruses, an urgent requirement for the future are new methods that are able to reveal evolutionary history using other types of biological data. Two data types seem most appropriate here: similarities (and differences) in genome organization (i.e. in gene order and gene content), and protein secondary structure.

2.3.2 Phylogenies based on genome organization

Outside the sphere of viruses, one of the most interesting developments in phylogenetics has been the development of methods that consider gene content and gene order as characters (Sankoff 2003). However, while such approaches may eventually prove useful to the study of large dsDNA viruses, where there is perhaps sufficient genomic patterning for meaningful analysis (McLysaght et al. 2003), they are unlikely to have a major impact on inferring the evolutionary history of RNA viruses. There are a number of specific problems associated with the phylogenetic analysis of such secondary genomic data, irrespective of the more generic problem of being able to construct a viable model of genome evolution. First, the genomes of RNA viruses are small, usually containing no more than 10–12 genes. Hence, there are very few phylogenetically informative characters, particularly as all viruses must carry a number of essential genes. Gene content therefore appears to be a weak phylogenetic character. Second, there appears to be little phylogenetic resolution in patterns of gene order. Whereas individual families of RNA viruses tend to be characterized by very similar gene orders and the six proposed supergroups of ssRNA+ viruses tend have similar genome organizations (Goldbach and de Haan 1994; Le Gall et al. 2008) (Fig. 2.6), gene orders can vary extensively among these supergroups, such that the inference of deep phylogenetic relationships is inviable. In addition, genome sizes and segment numbers often vary within individual viral families. As a consequence, no expansive phylogeny of families of RNA viruses based on genome organization is available at present, and it is difficult to see how one can be determined. Worse, the high levels of sequence divergence exhibited by many viral proteins sometimes make it extremely difficult to accurately determine which proteins are truly homologous. In summary, the study of genome organization does not appear to be a profitable approach to resolve deep phylogenetic structure in RNA viruses.

2.3.3 Phylogenies based on protein structure

Because the study of viral origins necessitates the use of highly divergent sequences, phylogenetic analyses often involve amino acid sequences that fall within the
‘twilight zone’ of pairwise sequence similarity (≈15–30% identity) (Doolittle 1986). Sadly, accurately recovering evolutionary information in the face of such low levels of sequence similarity is one of the most difficult problems in computational biology, but one that we may need solve if we are to determine the ancient evolutionary history of viruses. A more profitable mode of investigation may therefore be through the analysis of protein structure, such as that of the icosahedral virion, as this seems to be a far more stable character than the underlying primary sequence. While the amino acid sequences of a specific gene may harbour little or no similarity, providing no evidence that they are even homologous, strong similarities can still be observed at the level of protein structure, as the negative fitness costs associated with the disruption of these structures can be profound. This approach, at least in spirit, has already been used in attempts to infer the phylogenetic relationships among negative-sense RNA viruses (Vieth et al. 2004). Unfortunately, the fascinating observation of similarities in protein structure among highly divergent viruses, including those with RNA and DNA genomes, has yet to lead to sophisticated methods to infer phylogeny from structural data. The inconvenient truth is that we may not get a good method to infer phylogeny from structure until we can accurately predict structure from sequence. Although progress is being made in the development of viable models of protein evolution, the limitations are all too apparent (Robinson et al. 2003; Thorne 2007). To make a final point in passing, it is both interesting and ironic that despite the genomic revolution, a morphological trait—protein structure—may yet provide the most powerful means by which to infer the deep phylogenetic relationships of RNA viruses.

2.4 RNA viruses and the evolution of the genetic code

As a coda to this chapter I will briefly consider one other aspect relating to the origins of RNA viruses that has been ignored to date but which has important implications for their evolutionary history: the evolution of the genetic code. The key observation here is that RNA viruses necessarily employ the same genetic code as their hosts. Hence, for the vast majority of organisms that employ the standard (‘universal’ or ‘canonical’) genetic code, so the viruses that infect these organisms also employ the standard genetic code. Similarly, for all those organisms that employ variant genetic codes, the viruses that infect these organisms (or organelles) employ the same variant code. For example, in the fungal mitochondrial code, the ‘universal’ opal stop codon UGA instead encodes the amino acid tryptophan. In turn, the mitoviruses—ssRNA+ viruses (family Narnaviridae) that infect the mitochondria of fungi—contain a number of internal UGA codons and, as RdRp activity has been found in infected mitochondria, these must also express UGA as tryptophan (Cole et al. 2000).

Given that RNA viruses are obligate parasites, the strong association between the genetic code in host and virus is entirely predictable: because viruses employ the same apparatus of protein translation of their hosts, it follows that they must also employ the same assignment of codons and amino acids (or stop codons) otherwise non-functional proteins will be produced. But this raises a far larger question: how
did viruses evolve alternative codes? As the mis-assignment between codons and amino acids is very likely to result in non-functional polypeptides, it is difficult to understand how a virus infecting a host species that employs the standard genetic code could ever jump to successfully infect and replicate in a host species with a variant genetic code. Surely the loss in fitness that such a host jump would entail would be too severe for the establishment of a successful infection? Indeed, it is theoretically possible that preventing viral infections was one of the major selective forces driving the evolution of variant genetic codes: by using an alternative genetic code, a host would have an extremely potent antiviral agent, effectively preventing any new viral infection from establishing itself (Shackelton and Holmes 2008). It is therefore possible to imagine, although currently untested, that the selection pressure imposed by viral infections could result in the reassignment of infrequently used amino acids, therein resulting in the development of an alternative genetic code. Highly circumstantial evidence for this idea is that codon reassignments are particularly common in ciliates, such as Tetrahymena thermophila, that inactivate bacteriophage as they filter-feed (Lozupone et al. 2001; Pinheiro et al. 2007). Such frequent exposure to potentially highly pathogenic viruses may represent exactly the sort of selection pressure required to favour the evolution of variant genetic codes. Finally, another important aspect of this idea, which relates to the overall theme of this chapter, is that those viruses that currently infect organisms with variant genetic codes must have either originated recently as escaped genes from these hosts or, perhaps more likely, entered their hosts before the code reassignment took place. Unfortunately, it is currently impossible to choose among these two theories.
The mechanisms of RNA virus evolution

In many ways, this chapter is the heart of the book. In particular, it is arguable that the more ‘macroevolutionary’ patterns described in Chapters 2, 5, and 6 cannot be understood without a firm grasp of the processes of microevolution in RNA viruses. My specific aim here is therefore to describe the rates, determinants, and consequences of a variety of fundamental evolutionary processes in RNA viruses, particularly mutation, recombination, natural selection, and epistasis. Perhaps to the relief of many working with RNA viruses, debates concerning the respective roles played by natural selection and genetic drift—what John Gillespie has called the ‘great obsession of population genetics’ (Gillespie 1998)—have not dominated evolutionary arguments. This is probably because students of RNA virus evolution have spent more time considering how frequent mutation may play an even more important role in shaping evolutionary dynamics. However, no discussion of the mechanics and dynamics of viral evolution is complete without at least picking at the great obsession.

3.1 The evolutionary dynamics of RNA viruses

3.1.1 Mutation rates in RNA viruses and their determinants

From an evolutionary perspective, RNA viruses have two uniquely defining features: extremely high mutation rates and extremely small genomes. As I will argue throughout this book, these two features are also inextricably linked. Not only are the mutation rates exhibited by RNA viruses extremely rapid but, with the exception of ssDNA viruses which are discussed in detail below, they are orders of magnitude higher than those seen in DNA-based organisms.

Estimates of mutation rate span several orders of magnitude among RNA and DNA viruses taken together: from up to 1.5×10^{-3} mutations per nucleotide, per replication (mut/nt/rep) in the ssRNA+ bacteriophage Qβ (Drake 1993), to only 1.8×10^{-8} mut/nt/rep in the dsDNA virus herpes simplex virus type 1 (HSV-1) (Drake and Hwang 2005) (Fig. 3.1). For RNA viruses replicating with RdRp, measured mutation rates are usually close to approximately 1 mutation per genome, per replication (mut/genome/rep) (Drake 1993; Drake et al. 1998; Drake and Holland 1999; Schrag et al. 1999; Duffy et al. 2008). Hence, a mutation is made during nearly every round of genome replication. Consequently, it is clear that RNA virus evolution is, to a large extent, dominated by the process of mutation. Rather lower mutation rates are observed in
3 The mechanisms of RNA virus evolution

Retroviruses such as HIV-1, with estimates ranging from 0.1 to 0.3 mut/genome/rep (Drake 1993; Mansky and Temin 1995; Drake et al. 1998; Mansky 1998), perhaps five times lower than those observed in most RNA viruses that replicate using RdRp. Although HIV-1 is often cited as the cause célèbre of rapid mutation, in reality it is less error-prone than most other RNA viruses. This has important consequences for the idea that HIV-1 forms a quasispecies (see section 4.2). Finally, Jan Drake proposes that there is a ‘universal’ mutation rate in DNA viruses and bacteria of 0.0034 mut/genome/rep (Drake et al. 1998). Although this is an intriguing idea that fits some of the data, there are also exceptions (Duffy et al. 2008). For example, the ssDNA phage φX174 has a mutation rate rather higher than predicted under the universal rate model (Raney et al. 2004).

Even though there is a general consensus that replication error rates in RNA viruses are extremely high, it is important to note that the accurate estimation of these rates is challenging under any circumstances. Also, rather lower rates of mutation have been observed in some viruses that replicate using RdRp (Malpica et al. 2002; Furió et al. 2005), although most fall within the same order of magnitude. The most dramatic exception proposed to the rule of rapid mutation is yellow fever virus (YFV), where a mutation rate of 0.0021–0.0025 mut/genome/rep has been reported (Pugachev et al. 2004). Not only is this rate some 400 times lower than that usually associated with RdRp, but it is also lower than Drake’s universal mutation rate for DNA microbes. It is therefore difficult to reconcile such a low rate with what is usually seen with RdRp, particularly as estimates of the rate of nucleotide substitution in YFV fall squarely within the normal range associated with RNA viruses (Bryant et al. 2007). Indeed,
it is notable that this estimate of ‘mutation rate’ ignores the potentially crucial consequences of natural selection, including that on lethal mutations, such that it cannot be regarded as reliable.

The differences in intrinsic mutation rate among viruses broadly correspond to the fidelity of the various polymerases used in replication: the RdRp used by RNA viruses is more error-prone than the RT used by retroviruses, which in turn has a higher mutation rate than the DNA polymerases used by DNA viruses (Fig. 3.1). Comfortingly, these differences in polymerase fidelity have a solid basis in biochemistry. In particular, DNA polymerases have the ability to correct the errors made during replication, which reduces overall mutation rates by at least an order of magnitude (Garcia-Diaz and Bebenek 2007). In contrast, no RdRp is known to possess this proofreading capability. In addition, DNA-based organisms are able to employ enzymes that perform base-excision repair on mispaired bases, again reducing error rates. In the case of retroviruses, cellular deaminating enzymes, most notably APOBEC3G, add additional transition mutations to those generated during replication (Walsh and Xu 2006), and which also constitutes a potent anti-viral strategy (Mangeat et al. 2003; see section 3.3).

There is also evidence that the mechanism of viral replication affects mutation rate, manifest in the difference between ‘stamping-machine’ and ‘geometric’ replication (Duffy et al. 2008). In stamping-machine replication a single virus acts as the template for all progeny genomes, so that mutations accumulate linearly. In geometric replication some of the early progeny genomes are themselves used as templates for further progeny, so that mutations accumulate geometrically as a mutated template propagates the given error to all its replicate copies (Chao et al. 2002), thereby increasing the rate of mutation accumulation (Drake et al. 1998).

However, while it is clear that the error rates associated with RNA polymerase are very high, there are still fundamental gaps in our understanding of the mutational process. Most notably, those estimates of mutation rate undertaken to date usually only consider mean mutation rates, and so provide no information on the distribution of error rates within a single replication cycle. Therefore, with very few exceptions (Chao et al. 2002; Malpica et al. 2002), we do not know what fraction of the progeny of replication carry multiple mutations (which may be commonplace; Malpica et al. 2002), or whether this distribution of mutants is Poisson, geometric, or takes another shape (Drake et al. 2005; Drake 2007). However, precisely describing the mutation distribution is critical to understanding adaptation. For example, the occurrence of multiple advantageous mutations in a single replication cycle may be critical for successful cross-species virus transmission (section 6.4; Kuiken et al. 2006).

3.1.2 A comparison of substitution rates in viruses

The division between RNA and DNA viruses in rates of mutation is generally mirrored in their rates of nucleotide substitution, which may differ by some six orders of magnitude. As such, the main factor shaping nucleotide substitution rates in RNA viruses is evidently how frequently mutations are generated. However, there are mounting
data to show that although ssDNA viruses obviously possess DNA genomes, and even replicate using host polymerases, their rates of nucleotide substitution are far closer to those of RNA viruses than to those of dsDNA viruses, indicating that the defining issue is not the difference between RNA and DNA (Duffy et al. 2008).

Before proceeding, it is important to clear up a long-standing confusion in studies of viral evolution, between levels of antigenic and genetic variation. This confusion is manifest in statements that some viruses, and particularly measles, ‘evolve slowly’, while others, exemplified by influenza virus, ‘evolve rapidly’. In reality, what these statements reflect is that antigenic variation is relatively limited in measles virus, such that the vaccines we use to control this infection do not have to be regularly updated, while high levels of antigenic variation are observed in human influenza A virus, so that vaccines need to be updated almost annually and vaccine failure is commonplace. However, although viruses like measles and influenza undoubtedly differ dramatically in levels of antigenic diversity, their underlying mutational and substitutional dynamics fall within the ‘standard’ RNA virus range which I will define shortly (Schrag et al. 1999; Woelk et al. 2001, 2002; Kremer et al. 2008; Pomeroy et al. 2008; Rambaut et al. 2008).

Tangible evidence for the rapidity of nucleotide substitution in RNA viruses is that this process can often be observed in real time, simply by analysing the distribution of branch lengths in viruses sampled at different times (Drummond et al. 2003a, 2003b). Many RNA viruses therefore evolve on a timescale that can be recorded by human observation. For nearly all RNA viruses examined to date, this translates into overall rates of nucleotide substitution in the range of 10^{-2}–10^{-5} subs/site/year, with most exhibiting rates within an order of magnitude of a value of 1×10^{-3} subs/site/year (Hanada et al. 2004; Jenkins et al. 2002) (Fig. 3.2). Although there is an absence of reliable estimates of substitution rate in dsRNA viruses, that these viruses also exhibit considerable genetic diversity suggests that their substitution rates fall within the same boundaries (for example, Maan et al. 2007; Matthijnssens et al. 2008). Finally, whereas rates of nonsynonymous substitution vary more widely among RNA viruses, and among genes within individual viruses, reflecting differences in selective constraint and life history, these differences have only a small impact on overall rates of nucleotide substitution as most substitutions occur at synonymous sites.

In contrast, far lower rates of nucleotide substitution are observed in dsDNA viruses. For large dsDNA viruses of animals, substitution rates have been estimated assuming (probably fairly) that they co-diverged with their hosts over timescales of millions of years. The best documented case is that of the gammaherpesviruses, where related viruses have been obtained from diverse tetrapods (McGeoch and Gatherer 2005). If the assumption of co-divergence is correct this translates into evolutionary rates in the range of approximately 10^{-8} subs/site/year, and so close to the values seen in mammalian mtDNA (Hatwell and Sharp 2000). Similarly, low substitution rates have been estimated in some small dsDNA viruses that appear to have experienced host-virus co-divergence, most notably the papillomaviruses that infect a wide variety of vertebrates (Rector et al. 2007) and which are the primary cause of cervical cancer (Bernard 1994).
Although there are doubtless some errors in rate estimation, particularly when heavily laboratory-manipulated isolates are included in the analysis, the measurable evolution obvious in many RNA viruses suggests that these rates are, by and large, accurate. To my mind, the difficulties in rate estimation and the inherent sampling errors make it foolish to think of these as measures as anything other than broad-brush indications of evolutionary tempo, so that ‘in the range of 10^{-3}–10^{-4} subs/site/year’ is probably accurate enough. One important source of such error is that all methods currently used to estimate substitution rate assume that the sampled sequences contain only fixed substitutions (as is implicit in the term substitution rate). While nucleotide changes that fall on the deeper branches of phylogenetic trees represent mutations that must have reached high frequency in the population, including true fixation events, a subset of the changes that fall on terminal branches will constitute transient polymorphisms that will ultimately be lost from the population. Given the mutational power and constrained genomes of RNA viruses, it is not surprising that a large proportion of mutations seem to fall into this transient deleterious class (Gao et al. 2004; Kosakovsky Pond et al. 2006; Pybus et al. 2007; section 3.4). Consequently, the evolutionary rates estimated using time-structured data must reflect a composite mutation/substitution rate parameter, which will inflate rate estimates in the short-term (Ho et al. 2007). As such, measures of intra-host diversity should never be used to estimate long-term substitution rates. However, as most deleterious mutations

![Fig. 3.2](image-url) Average rates of synonymous nucleotide substitution (per site, per year on a log scale) in different families of RNA virus (and HDV). Note that although the substitution rate for GBV-C (originally called hepatitis G virus; HGV) appears anomalously low in this figure, more recent analyses (Romano et al. 2008) indicate that this virus evolves at approximately the same rate as other RNA viruses so that its rate has been adjusted accordingly here, as shown by the arrow. Adapted from Hanada et al. (2004) with permission.
may be purged rapidly from RNA virus populations (Holmes 2003a), it is likely that the inclusion of transient polymorphisms will only have a minor effect on rate estimates in most cases.

3.1.3 Differences in viral generation time

Although the substitution rates of RNA viruses are certainly high, they still vary by approximately three orders of magnitude—from roughly 10^{-2} to 10^{-5} subs/site/year—irrespective of estimation method. Why is this so? One possibility is that RNA polymerases differ in intrinsic fidelity. While this is clear from the initial estimates of mutation rate made by Jan Drake and colleagues, and there is good evidence that the fidelity of RNA polymerase can be manipulated experimentally (Vignuzzi et al. 2005), and that it may vary according to the host species infected (Pita et al. 2007), such localized differences in error rate cannot explain the three order of magnitude variation in substitution rates: for example, the error rate of the ‘high-fidelity’ strain of poliovirus used by Vignuzzi et al. (2005) was still higher than that of DNA viruses. As a consequence, it is likely that differences in viral generation time (replication rate), and specifically the time it takes to go from infected cell to infected cell, explain most of the variance in substitution rates. Unfortunately, accurate estimates of generation time are unavailable for most RNA viruses. At the extremes are viruses that appear to be effectively latent within hosts, replicating only occasionally, which in turn results in greatly reduced rates of nucleotide substitution (see below), compared to those in which replication cycles which can be measured in timescales of hours. As an example of the latter, the intracellular part of the poliovirus replication cycle takes 4–5 h, with cell lysis occurring after 10–12 h (C. Cameron, personal communication). For HIV, where the dynamics of replication have been studied in detail, the cell-to-cell generation time is approximately 2.6 days (Perelson et al. 1996).

The idea that latency reduces substitution rates is well developed in the case of the retroviruses HTLV-I and HTLV-II, in which low rates of epidemic transmission may mean that viral evolution is dominated by the occasional clonal expansion of infected cells within individual hosts (Vandamme et al. 2000). This results in substitution rates as low as approximately 10^{-7} subs/site/year (Salemi et al. 1999; Lemey et al. 2005). Another good example is provided by SFV where phylogenetic analysis suggests virus-host co-divergence for periods in excess of 30 million years (Switzer et al. 2005; Liu et al. 2008). Using the primate fossil record as a calibration point results in substitution rates of only 1.7×10^{-8} subs/site/year, within the range seen in dsDNA viruses but many orders of magnitude lower than those of other RNA viruses (Switzer et al. 2005). As some intra-host genetic variation has been observed in SFV (Schweizer et al. 1999), suggesting that its RT has not evolved additional mechanisms of error correction, and an extremely low replication rate is the most likely explanation for the low substitution rate in this virus (Meiering and Linial 2001). More generally, because of their ability to integrate into host genomes and so only undergo replication by the much higher-fidelity DNA polymerases, all
retroviruses have the capacity to evolve slowly if they can reduce the frequency of RNA-based replication. The ultimate end point of this process are the endogenous retroviruses, which have entirely assimilated the evolutionary dynamics of their host organisms (see section 5.3).

Substitution rates also vary to some extent among persistent RNA viruses that have distinct periods of intra- and inter-host evolution. In the case of HIV-1, for example, there is an apparently inverse relationship between rates of viral transmission and rates of evolutionary change, with the highest substitution rates recorded within individual hosts (Maljkovic Berry et al. 2007). The elevated rate of nucleotide substitution at the intra-host level may be because this part of the viral life cycle is dominated by the selective fixation of amino acid changes that enable immune escape (Nielsen and Yang 1998; Williamson 2003). Alternatively, it may be that many of the mutations that occur within hosts are purged (‘revert’) when the virus is transmitted to new hosts due to a mismatch with cytotoxic T-lymphocyte (CTL) responses, as determined by HLA type (Li et al. 2007), which in turn results in strong purifying selection (see section 7.2).

3.1.4 Slowly evolving RNA viruses?

Understandably more controversial are those cases in which RNA viruses replicating with an RdRp purportedly evolve at rates far lower than 10^{-5} subs/site/year, and where nuclear integration does not occur. A handful of RNA viruses fall into this category. Early studies suggested that filoviruses, and most famously Ebola virus (EBOV), might evolve very slowly, largely because of the high levels of sequence similarity observed between viruses sampled from specific EBOV outbreaks (Sanchez et al. 1996). However, more recent analyses have revealed that the Zaire strain of Ebola virus (EBOV-Zaire), for which most data are available, evolves at rates similar to those seen in other RNA viruses (Biek et al. 2006; Walsh et al. 2005). More compelling are suggestions that the flavivirus GBV-C (originally called hepatitis G virus; HGV) evolves at rates as low as \(10^{-7}\) subs/site/year (Suzuki et al. 1999; Hanada et al. 2004). Indeed, GBV-C has one of the key attributes of a slowly evolving virus—it chronically infects hosts in an asymptomatic manner (see section 6.2)—which has reasonably led to suggestions that it establishes an effectively latent infection (Suzuki et al. 1999). Further, it has been proposed that GBV-C, and its close relative GBV-A, have co-diverged with their primate hosts over millions of years (Charrel et al. 1999), which again argues for low substitution rates. However, more detailed studies of time-structured sequence data from GBV-C have revealed substitution rates close to those observed in other flaviviruses (Romano et al. 2008), and intra-host genetic variation has been observed in this virus (Zampino et al. 1999). Similar arguments apply to the rodent-associated hantaviruses (family Bunyaviridae), where substitution rates in the range of \(10^{-7}\) subs/site/year have also been inferred, again based on the assumption of host-virus co-divergence (Hughes and Friedman 2000; Plyusnin and Morznov 2001). However, there are good reasons to doubt such low rate estimates. First, analyses of time-structured data have
again unearthed substitution rates that fall within the standard RNA virus range (Ramsden et al. 2008), matching new data revealing that intra-host genetic diversity is also extensive in hantaviruses and indicative of a high mutation rate (Sironen et al. 2008). Second, newly available hantavirus sequences from shrews (insectivores) are mixed with those sampled from rodents on phylogenetic trees (Arai et al. 2008; Ramsden et al. 2009), so that neither mammalian order forms a monophyletic group in the virus phylogeny. This suggests a far more complex evolutionary pattern than simple host-virus co-divergence.

The final class of RdRp-replicating RNA viruses proposed to evolve anomalously slowly are some of those that infect plants. For example, both tobamoviruses and closteroviruses exhibit few genetic changes between sequences isolated over long time periods (Fraile et al. 1997; Marco and Aranda 2005), with the former group also suggested to have co-diverged with their hosts for perhaps as long as 100 million years (reviewed in Gibbs et al. 2008a). The Fraile et al. (1997) paper is particularly noteworthy in that limited mutation accumulation was observed among isolates of tobacco mild green mosaic tobamovirus (TMGMV) sampled almost 90 years apart, while one isolate of tobacco mosaic (tobamovirus) (TMV) was sampled as early as 1899. However, as these viruses were not studied with the rigorous techniques associated with ‘ancient DNA’ that their age merits (Cooper and Poinar 2000), the low substitution rate in TMGMV requires independent verification. Similarly, the co-divergence of tobamoviruses and their principle hosts has not been rigorously tested.

These uncertainties notwithstanding, it has been proposed that the severe population bottlenecks that occur both within and among hosts might act to reduce substitution rates in plant RNA viruses (Li and Roossinck 2004; Ali et al. 2006; see section 3.3). However, if viral evolution is in large part neutral (itself the source of much debate), then changes in population size will have no affect on substitution rates, and major population bottlenecks at transmission might equally be expected to occur in rapidly evolving animal RNA viruses. Similarly, it has been suggested that the lack of adaptive immune systems in plants results in weaker immune-mediated positive selection compared to animal viruses and hence lower rates of nonsynonymous substitution (García-Arenal et al. 2001). While a reduction in immune selection pressure will undoubtedly reduce nonsynonymous rates, estimates of evolutionary rate in plant RNA viruses using time-structured data are within the range observed in animal RNA viruses (Fargette et al. 2008a; Gibbs et al. 2008b; Simmons et al. 2008), suggesting that they do not evolve anomalously slowly. In short, there is currently no compelling evidence that any virus replicating with an RdRp evolves slower than approximately 10^{-5} subs/site/year.

3.1.5 Rapidly evolving ssDNA viruses

Of the recent developments in understanding the evolutionary dynamics of viruses, perhaps that of most importance is the recognition that ssDNA viruses exhibit rates of nucleotide substitution that approach those of their RNA counterparts. Although
Drake’s universal genomic mutation rate requires that ssDNA viruses, all of which have genomes smaller than approximately 11,000 nt, should have high error rates. It was originally thought that these viruses had low mutation rates similar to those in dsDNA viruses as they rely on host DNA polymerases for replication. While high levels of genetic diversity were observed in a number of ssDNA viruses, which is evidently compatible with elevated mutation rates (Isnard et al. 1998; Sanz et al. 1999; Khudyakov et al. 2000; Lopez-Bueno et al. 2006; Ge et al. 2007), the rapid evolution of ssDNA viruses was not fully apparent until the first phylogenetic analysis of time-structured data from carnivore (Shackelton et al. 2005) and human (Shackelton and Holmes 2006; Norja et al. 2008) paroviruses. The case of the carnivore paroviruses is particularly convincing since the emergence of canine parovirus (CPV) in dogs from feline panleukopenia virus (FPV) in cats during the 1970s is well documented (Truyen et al. 1996). Strikingly, in both viruses the substitution rate was estimated to be approximately 10^{-4} subs/site/year, and hence within the range seen in RNA viruses, but far lower than that of dsDNA viruses. Similarly high rates of nucleotide substitution have now been determined for the plant geminivirus tomato yellow leaf curl virus (Duffy and Holmes 2008) and the anellovirus SEN-V (Umemura et al. 2002). Why, mechanistically, ssDNA viruses might evolve (and presumably mutate) rapidly even though they utilize host polymerases is unclear, although it is possible that both proofreading and excision repair are less efficient on ssDNA, perhaps reflecting differences in methylation patterns between host and virus (Sanz et al. 1999; Duffy and Holmes 2008). Similarly, deamination, a source of error that is independent of that generated during faulty replication, may also elevate mutation rates in ssDNA viruses (Duffy and Holmes 2008).

The possible exception to the revisionist notion that ssDNA viruses evolve quickly are the circoviruses, such as those responsible for postweaning multisystemic wasting syndrome (PMWS) in pigs. Circoviruses are particularly noteworthy in that they are the smallest of all DNA viruses, with a genome usually comprising only two ORFs and a total length usually no larger than approximately 2000 nt. It has been proposed that these viruses exhibit substitution rates within an order of magnitude of their vertebrate hosts based on the assumption that they co-diverged with mammals and birds over a period of approximately 300 million years (Johne et al. 2006). However, while this story clearly merits further study, the evidence for long-term co-divergence was based on the analysis of just seven host species, a number of mis-matches were apparent, and some intra-host genetic variation was observed.

3.1.6 What sets the rate of RNA virus evolution?

As well as demonstrating that RNA (and ssDNA) viruses evolve rapidly, it is also important to document the evolutionary processes responsible for these high rates. The simplest hypothesis is that a high mutation rate is beneficial because it leads to the greater production of advantageous mutations, thereby increasing the rate of adaptive evolution. However, this idea is easily dismissed because the vast majority of the mutations that arise in RNA viruses are deleterious (see section 3.4),
so that increased mutation rates will generally reduce fitness. As a consequence, more reasonable hypotheses for the evolution of high mutation rates are based on some sort of evolutionary trade-off, either between replication rate and fidelity, or between the rates of deleterious and advantageous mutation (Sniegowski et al. 2000; Duffy et al. 2008).

3.1.7 Trade-offs and the evolution of mutation rates

The idea that there is an evolutionary trade-off between replication speed and replication fidelity, such that high mutation rates are simply a consequence of selection for rapid replication, which is also more error-prone (Elena and Sanjuán 2005; Furió et al. 2005), is an intriguing one. In direct support of this hypothesis, increased replication fidelity has been observed to result in a fitness cost, associated with a reduced replication rate, in experimental studies of both vesicular stomatitis virus (VSV) (Furió et al. 2005) and HIV-1 (Furió et al. 2007). Similarly, the higher-fidelity stamping-machine replication produces progeny genomes more slowly than geometric replication (French and Stenger 2003). However, while there is tentative, yet growing, evidence for a trade-off between replication rate and fidelity, whether this can explain mutation rates in their entirety, and whether it operates outside of the laboratory, remains to be established, especially as counter examples exist (Belshaw et al. 2008).

The possible evolutionary trade-off between the rate of production of deleterious and advantageous mutations has received rather more attention. Although some quasispecies models predict that high rates of deleterious mutation are advantageous (O’Fallon et al. 2007), natural selection should generally favour a reduction in mutation rates in stable environments as this will reduce the load of deleterious mutation, a burden that appears to be particularly severe for RNA viruses (García-Arenal et al. 2003; Pybus et al. 2007; section 3.4). However, the concept of a ‘stable’ environment seems alien to most RNA viruses, because of their continual struggle for existence against innate, intrinsic, and adaptive host immunity, as well as their exposure to new hosts and cell types. As a consequence, viruses probably always experience selection for mutation rates that are greater than zero, as is likely to be true of any genetic system (Sniegowski et al. 2000). In support of this idea, a selective advantage of lower compared to higher-fidelity RNA polymerases has been observed in experimental systems (Mansky and Cunningham 2000; Furió et al. 2005; Vignuzzi et al. 2005), although the differences in fidelity are minor compared to the observed range of substitution rates in RNA viruses. Perhaps more importantly, while these studies reveal that there is heritable variation for polymerase fidelity, an obvious pre-requisite for natural selection, RNA viruses are unable to reduce their error rates to the levels associated with DNA polymerases. This implies that there are major adaptive constraints acting against the evolution of very high-fidelity RNA polymerases. As discussed in more detail below, the major implication of this observation is that RNA viruses are in some sense ‘stuck’ with a highly error-prone replication enzyme, which has profound effects on much of their life history.
3.1 Evolutionary dynamics

•

Turning the tables, we can also ask what factors determine the upper limit on mutation rates in RNA viruses. The most interesting observation here is that artificially increasing mutation rates results in an excessive mutational load and hence a major loss of fitness (see section 4.3; Crotty et al. 2001; Domingo et al. 2005). Consequently, there is clearly a selectively determined upper limit on mutation rates. A ceiling on mutation rates also explains why very highly error-prone ‘mutator’ strains like those seen in bacteria (Taddei et al. 1997) have not been observed in RNA viruses (Duffy et al. 2008), even though single mutations can increase the fidelity of RNA polymerase (Mansky and Cunningham 2000; Vignuzzi et al. 2005) (and selection by viruses may even be responsible for bacterial mutators; Pal et al. 2007). Similarly, the reduction in viral fitness that comes as a consequence of increased mutation rates explains why the mutagens 5-fluorouracil and ribavirin have proven useful in reducing viral loads in experimental systems, and may eventually constitute a powerful form of antiviral therapy: so-called lethal mutagenesis (Mansky and Bernard 2000; Sierra et al. 2000; Domingo et al. 2005; Bull et al. 2007; see section 4.3). It is also possible that natural selection favours traits that compensate for the accumulation of deleterious mutations associated with high mutation rates, particularly in the form of mutational robustness (Elena and Sanjuán 2005; Montville et al. 2005; Codoñer et al. 2006; Lenski et al. 2006; Sanjuán et al. 2007). This phenomenon is considered in more detail in section 3.5.

3.1.8 Mutation rates and mutational loads

That the artificial elevation of mutation rates in RNA viruses is associated with major fitness costs strongly supports the idea that RNA viruses reside close to their maximum tolerable mutation rates. At higher error rates population structure breaks down because the fittest genotype is lost. This eventual leads to a total loss of information, or the ‘melting point’ as memorably described by Manfred Eigen (Eigen 1971, 1992; Swetina and Schuster 1982). The mutation rates observed in RNA viruses might therefore represent a trade-off between the generation of sufficient beneficial mutations to rapidly adapt to changing environments, yet not so many as to induce mutational meltdown.

An important consequence of the idea that RNA viruses live at the edge of (i.e. just below) the upper limit on mutation rate is that there must also be an upper limit on their genome sizes: given the same rate of mutation per nucleotide, RNA viruses with larger genomes will suffer more deleterious mutations than those with smaller genomes. It is this relationship that likely explains why the maximum genome sizes of RNA viruses are set at approximately the reciprocal of their mutation rate (Eigen 1992), although it is not necessarily the case that RNA viruses will attain the maximum genome size their error rate allows. Although this theory has traditionally been applied to RNA viruses, that ssDNA viruses also exhibit very high rapid evolutionary rates, and similarly possess very small genome sizes, clearly supports this hypothesis (Duffy et al. 2008). A variety of other possible explanations for the small genome sizes of RNA viruses are discussed in
section 5.1, although I believe that none are as powerful as the mutation hypothesis outlined here.

3.1.9 Are RNA viruses trapped by high mutation rates?

It is always tempting to construct adaptive explanations for biological phenomena. However, it is possible that a major reason why RNA viruses mutate rapidly is that they are simply unable to do otherwise. This, I should hasten to add, is not the same as saying that RNA viruses are in some respects a ‘frozen accident’, but rather that they occupy a particular region of evolutionary parameter space where major improvements in polymerase fidelity are extremely difficult. Such a major constraint in evolutionary trajectory again relates to Eigen’s paradox (see section 2.2.4). Although this concept is usually applied to debates over the origin of life or the evolution of complexity, Eigen’s paradox may also apply to contemporary RNA viruses: their highly error-prone replication dictates that they are unable to evolve long genomes, so to greatly reduce polymerase error rates requires a far higher-fidelity polymerase that can only be attained with a longer genome. An exception—the Coronaviridae (and related Roniviridae), in which capture of a host exoribonuclease (ExoN) domain may have reduced error rates and elongated genome sizes— is discussed in section 5.1. It is therefore possible that RNA viruses simply lack the requisite genomic flexibility to be able to significantly lower their mutation rates. As a consequence, the life-history strategy of RNA viruses is one in which the cost of abundant deleterious mutation is offset by the production of vast numbers of progeny.

3.2 Recombination and reassortment in RNA virus evolution

While mutation is the ultimate source of genetic variation, there is a growing body of work suggesting that recombination, and its sister process reassortment, can, in some instances, also play a significant role in shaping patterns of genetic diversity in RNA viruses. However, both the frequency with which recombination occurs and the reasons for its occurrence have proven controversial.

Before proceeding it is important to make the essential distinction between recombination, which can in theory occur in all RNA viruses, and reassortment, which only occurs in that subset of RNA viruses that possess segmented (including multi-component) genomes (Fig. 3.3). Although both processes may be regarded as forms of sexual reproduction in the broad sense, and both require two viruses to co-infect a single cell, they are mechanistically very different.

Recombination in RNA viruses, sometimes referred to as ‘RNA recombination’, is thought to occur when two viruses co-infect a single host cell and a hybrid molecule is produced through a process termed copy-choice replication (Lai 1992) (although other models of recombination have been proposed; Chetverin et al. 1997). Under the copy-choice model the RdRp is thought to jump templates during negative strand synthesis,
3.2 Recombination and reassortment

Generating an RNA molecule with mixed ancestry (Aaziz and Tepfer 1999). This form of recombination can be ‘homologous’, such that the process of template jumping occurs between regions of homologous sequence, or ‘non-homologous’ (illegitimate), in which genetic material moves between disjunct genomic regions. Both homologous and non-homologous recombination have been described in a variety of RNA viruses, using both experimental and comparative techniques (reviewed in Worobey and Holmes 1999).

The process of reassortment which occurs in segmented RNA viruses is rather different. In this case two viruses co-infect a single cell and reassortants are made when a progeny virus packages segments with different ancestries (see, for example, Borucki et al. 1999). As a simple case in point, a ‘7 + 1’ reassortant of influenza A virus occurs when seven genomic segments have their ancestry with one parental lineage, while the remaining segment is derived from a different lineage. Because multicomponent viruses are also segmented, and therefore able to reassort, I will consider them in the same way as other segmented RNA virus (as have others; Chao 1991).

Another form of interaction among RNA viruses stemming from mixed infections that is also analogous to sexual reproduction is phenotypic mixing. In this case, the progeny produced by a mixed infection contain the capsid or envelope protein.

Fig. 3.3 How (a) copy-choice RNA recombination and (b) reassortment create new genetic configurations in RNA viruses. Reassortment only occurs in viruses with segmented genomes.
produced by a genetically different parent, leading to an interesting mismatch between genotype and phenotype (Coen and Ramig 1996). This process has been described among closely related viruses, such as the different serotypes of poliovirus (Ledinko and Hirst 1961), as well as among different virus species (Itoh and Melnick 1959). Thus far, however, the evolutionary consequences of phenotypic mixing have not been explored in any detail.

3.2.1 Recombination frequency in RNA viruses

The first question to discuss with respect to viral recombination is the frequency of its occurrence. In what follows, I will concentrate largely on RNA recombination, as the reassortment of segmented RNA viruses is uncontroversial, and has been documented to be very frequent in some cases (Silander et al. 2005). For the sake of space, I will bypass discussions of recombination ‘hot spots’ in viral genomes, although these have been documented (for example, Jetzt et al. 2000; Ohshima et al. 2007).

At present, the main generality that can be drawn from comparative studies of recombination in RNA viruses is that its frequency varies enormously: it occurs at very high rates in retroviruses (and in other viruses that utilize RT; Mansky 1998; Froissart et al. 2005), and also as reassortment in viruses with segmented genomes (including dsRNA viruses), at highly variable frequencies in ssRNA+ viruses (for example, frequently in coronaviruses, enteroviruses, and potyviruses, sporadically in flaviviruses), and is far less common in ssRNA− viruses (Fig. 3.4). Such a broad-brush picture of recombination frequency corresponds with some important biological features of these viral groups. In particular, the virions of retroviruses carry two RNA molecules—so that they can be thought of as ‘pseudo-diploid’—which means that viruses with different ancestries that are present in a single cell have a high probability of being packaged together, producing progeny that are effectively heterozygous. Copy-choice recombination may then produce genetically distinct progeny during reverse transcription. For example, in the case of HIV-1, the per-nucleotide rate of (copy-choice) recombination exceeds that of mutation, occurring two to three times per replication cycle (Jetzt et al. 2000; Jung et al. 2002). Obviously, heterozygous viral progeny cannot be produced when the genomic material is present as a single molecule, which is the case for most RNA viruses, in turn reducing rates of detectable recombination. A far stronger genomic constraint appears to be present in ssRNA− viruses, and explains why recombination rates are likely to be lower in this case. Specifically, the RNA molecules in ssRNA− viruses are very quickly bound to nucleoprotein subunits, and perhaps other proteins, so that RdRp-mediated replication can proceed. However, this tight ribonucleoprotein complex also acts to prevent template switching of the RNA polymerase. Although recombination in ssRNA− viruses is predictably infrequent (Chare et al. 2003), a number of interesting cases have been reported in respiratory syncytial virus (Spann et al. 2003), arenaviruses (Archer and Rico-Hesse 2002; Charrel et al. 2002), and EBOV (Wittmann et al. 2007). In sum, there are powerful mechanistic factors, themselves functions of genome architecture,
3.2 Recombination and reassortment

that at least partially determine the rates of recombination and reassortment in RNA viruses.

3.2.2 Detecting recombination in RNA viruses

Fig. 3.4 Estimates of recombination rate in the major categories of RNA viruses and retroviruses. The y axis shows a measure of recombination rate (ρ) estimated using the program LDhat (McVean et al. 2002), in which $\rho = 2N_e r$ (where r is the recombination rate and N_e the effective population size). The maximum value for ρ was arbitrarily set to 100. The x axis shows a measure of average selection pressure manifest as mean d_n/d_s (the ratio of nonsynonymous (d_n) to synonymous (d_s) substitutions per site). The data used here represent 171 virus genes covering a diverse array of RNA viruses. Note the generally lower values of ρ for the ssRNA−, viruses indicating that they recombine less frequently.

Although recombination in RNA viruses was traditionally explored using genetic methods (Lai 1992), comparative analyses now probably constitute the main way of determining its frequency. There are, however, three problems associated with the detection of RNA recombination from gene sequence data. First, in some cases it is clear that laboratory error is responsible for the sequences claimed to be recombinant. This phenomenon is well documented in dengue virus (DENV), where a number of the viruses claimed to be recombinant following phylogenetic studies (largely carried about by this author) have later been shown to result from erroneous sequencing
The mechanisms of RNA virus evolution

(Goncalvez et al. 2002; de Silva and Messer 2004). However, even accounting for this laboratory error there is strong evidence for recombination in DENV (Craig et al. 2003; Aaskov et al. 2007). Second, in some cases the apparent signal for recombination is due to the use of phylogenetic methods that cannot properly distinguish between this process and rate variation. A widely known case concerns the origin of the strain of influenza A virus responsible for the great global pandemic of 1918–1919. In this case, phylogenetic patterns reasonably thought to indicate a recombination event between human and swine isolates (Gibbs et al. 2001) were more probably due to lineage-specific rate variation (Worobey et al. 2002). Indeed, the occurrence of homologous RNA recombination in human influenza A virus remains to be demonstrated convincingly (Boni et al. 2008).

There is one more major reason why phylogenetic methods sometimes produce erroneous estimates of recombination frequency in RNA viruses: the use of consensus sequences. Most studies of genetic diversity in RNA viruses, particularly those that only cause acute infections in their hosts, have relied on the analysis of consensus sequences, in which each sequence depicts the most common nucleotide at any position in the viral sample. As discussed in section 3.6, the use of consensus sequences is greatly limiting when it comes to dissecting intra-host evolutionary dynamics, including that produced by recombination. In particular, with consensus sequences it is difficult to determine whether an isolate with phylogenetic evidence for recombination represents a bona fide recombination event, or a mixed infection where PCR has resulted in the amplification of two different viral molecules which then form an artificial hybrid on sequencing. Although mixed infection is a necessary prerequisite for recombination, it is not the same as determining the process itself. Consequently, to accurately determine the frequency of recombination in RNA viruses it will be necessary to obtain the sequences of individual viral particles, either through plaque purification or molecular cloning. In the absence of such data all phylogenetic studies of recombination in RNA viruses should be undertaken with caution, particularly if the putative recombinants are sporadic and/or involve isolates that were sampled many years apart, and which further suggests that they are laboratory artifacts (Boni et al. 2008). In contrast, if phylogenetic analyses reveal entire viral lineages to be recombinant, so that the progeny of recombination are ‘successful’ at the population level, this increases the likelihood that they reflect the true action of recombination in nature (particularly if isolates were derived from different laboratories). Just such a phylogenetic pattern was observed in EBOV (Wittmann et al. 2007), thereby constituting some of the best evidence for recombination in a ssRNA− virus obtained to date.

3.2.3 What determines the rate of recombination in RNA viruses?

The second question of evolutionary importance relating to the occurrence of recombination (and reassortment) is what processes dictate its frequency in viral populations? Although a variety of selective hypotheses have been put forward to explain the evolution of recombination in microbial organisms including viruses (Michod and Levin 1988; Michod et al. 2008), most discussion has focused on the two major
advantages that recombination has over asexual evolution: that it accelerates the rate of production of advantageous genetic combinations, and that it allows the more efficient purging of deleterious mutations, both of which decrease linkage disequilibrium (Felsenstein 1974). Although it has also been suggested that recombination is favoured because it facilitates the repair of genetic damage (Michod et al. 2008), the highly variable recombination rates exhibited by RNA viruses with similar burdens of deleterious mutation make this hypothesis unlikely. It is also important to keep in mind that there are costs associated with sex in RNA viruses, such as increasing the degree of intra-host competition (Turner and Chao 1998).

While it is clear that recombination accelerates that rate at which advantageous genetic combinations are produced, it is unlikely that it provides sufficient ‘value added’ for this to be the reason for its existence. For example, although recombination can clearly assist the development of drug resistance in HIV (Nora et al. 2007), most cases of antiviral resistance in this pathogen cannot be assigned to recombination. Similarly, while antigenic escape is commonplace in hepatitis C virus (HCV), recombination has been only sporadically observed in this virus (Kalinina et al. 2002; Noppornpanth et al. 2006; Sentandreu et al. 2008). Hence, it may be that mutation rates are normally so high in RNA viruses, and population sizes often so large, that recombination/reassortment is not required to rapidly generate genotypic variation. In addition, although the competition between advantageous mutations that is a feature of asexual populations—commonly referred to as clonal interference—has been observed in large populations of asexual RNA viruses (Miralles et al. 1999; Poon and Chao 2004; Pepin and Wichman 2008), and must act to constrain their adaptability to some extent, that asexual RNA viruses (i.e. at least some ssRNA− viruses) are so successful suggests that this does not constitute a major selection pressure for sexual reproduction.

3.2.4 Recombination and deleterious mutation

The second general theory for the evolution of recombination is that it allows the efficient removal of deleterious mutations: the so-called mutational deterministic hypothesis (Kondrashov 1988; Keightley and Eyre-Walker 2000). This theory has received a great deal of attention from evolutionary geneticists and requires both a high rate of deleterious mutation per genome replication \(U\), such that \(U\) is greater than 1, and that deleterious mutations interact through synergistic (negative) epistasis, so that their combined effect on fitness is greater than expected from their stand-alone effects (Kondrashov 1988).

The idea that the efficient purging of deleterious mutations might be an important aspect of the evolution of recombination in RNA viruses is supported by experimental studies demonstrating the importance of Muller’s ratchet—a progressive decrease in fitness due to the monotonous accumulation of deleterious mutations in small, asexual populations where genetic drift is intense (Muller 1964)—in these organisms (Chao 1990, 1994; Chao et al. 1992, 1997; Duarte et al. 1992; Novella et al. 1999; Lázaro et al. 2003; Poon and Chao 2004). However, while it is clear that Muller’s ratchet
can be readily generated in vitro, largely because severe population bottlenecks are easy to induce during experimental laboratory passage, how this relates to evolution in nature is an entirely different matter. Indeed, as discussed in more detail in section 3.3, determining the extent of population bottlenecks in natural populations of RNA viruses, as well as their long-term effective population sizes, is one of the most important components in our attempts to understand the evolutionary genetics of RNA viruses (although the power of the mutational deterministic hypothesis is that it does not require finite populations).

There is little doubt that RNA viruses fulfill the criteria of high U, as high rates of deleterious mutation have been both measured experimentally (Elena and Moya 1999; Duffy et al. 2008) (although not always; Burch et al. 2007) and using comparative approaches (Pybus et al. 2007). Remarkably, the estimates of U in some RNA viruses are extremely similar to those estimated for higher eukaryotes, at approximately $U=1$ (Haag-Liautard et al. 2007), although in the context of much smaller genomes. In addition, one of the most striking observations from early studies of genetic variation in HIV was how frequently gene sequences carried clearly deleterious mutations (stop codons, deletions). Given the small size of RNA virus genomes and the multiple functions often performed by viral proteins, it is probably reasonable to assume that the majority of mutations occurring within the genome of an RNA virus are deleterious. The issue of epistasis is, as always, more complex. However, as discussed in more detail in section 3.5, those studies undertaken to date suggest that although epistatic interactions are commonplace in RNA viruses, they tend to be positive (antagonistic) rather than negative (Burch et al. 2003; Bonhoeffer et al. 2004; Sanjuán et al. 2004c; Shapiro et al. 2006).

More direct evidence against the mutational deterministic theory is that comparative studies suggest that the burden of deleterious mutation is high for all RNA viruses studied, irrespective of their genome structure and therefore their propensity for recombination (Pybus et al. 2007). Hence, although retroviruses like HIV can evidently recombine rapidly, while segmented viruses like influenza A experience frequent reassortment, they seem to be subject to the same deleterious mutation pressure as unsegmented ssRNA− viruses where recombination is far less common. Although not definitive, this suggests that recombination is insufficient to greatly reduce the load of deleterious mutations experienced by RNA viruses.

Of course, this begs a major question: if deleterious mutation rates are extremely high in RNA viruses, and recombination is insufficient to save them from excessive deleterious mutation loads, what does? As stressed a number of times already, the most likely explanation is that RNA viruses possess very large population sizes for much of their life cycle (although this clearly does not apply to latent viruses). Hence, although deleterious mutations are produced in very large numbers, so are the viral progeny generated during every replication cycle. Large populations also mean that there will be sufficiently frequent reversal and compensatory mutations to off-set the accumulation of deleterious mutations. In short, RNA viruses are able to produce greater numbers of offspring than are removed by purifying selection, and it is this massive reproductive rate that is the key to their evolutionary survival.
While there is currently little evidence that recombination has been selected because of its ability to purge deleterious mutations, it is possible that it has the secondary consequence of disassociating advantageous and deleterious mutations. Again, this effect is largely a function of the extremely high mutation rates experienced by RNA viruses, which means that when an advantageous mutation occurs, there is a chance that it is accompanied by a deleterious mutation (although, as noted above, little is known about the distribution of mutation frequencies in RNA viruses). In these circumstances recombination allows beneficial mutations to be freed from the baggage of deleterious mutations that occur elsewhere in the genome (Rice and Chippindale 2001).

To conclude, at present I believe there is no compelling evidence that recombination and reassortment have evolved in RNA viruses because of their effects on linkage disequilibrium. In particular, if recombination was universally concerned with generating advantageous genotypes or removing deleterious ones, we would expect far higher rates across a diverse array of RNA viruses. Rather, I contend that most available data suggest that the differing rates of recombination and reassortment in RNA viruses reflect the mechanistic constraints associated with particular genome architectures and ecologies (although this does not exclude that natural selection is able to favour specific genetic variants produced by recombination). For example, rates of recombination are low in ssRNA− viruses simply because it is mechanistically impossible to be otherwise. Similarly, if segmentation was a means of facilitating sex through reassortment, why are segmented ssRNA+ viruses so heavily biased towards infecting plants? As such, I propose that recombination and reassortment are by-products of selection for other genomic and/or ecological characteristics, rather than being favoured as particular manifestations of sexual reproduction. Indeed, in Chapter 5 I will argue that genome segmentation, as well as several other important aspects of genome organization in RNA viruses, has evolved as a way of better controlling gene expression.

3.3 Natural selection, genetic drift, and the genetics of adaptation

The theory of evolution by natural selection sits at the heart of the Darwinian revolution. Indeed, to many people evolution is synonymous with natural selection. Given the unique role played by natural selection in evolution, it is essential that we assess its strength and determinants in RNA viruses. Such a goal is not simply for intellectual satisfaction. Because RNA viruses are a major cause of disease, revealing (and quantifying) the dynamics of natural selection is critical if we wish to understand such phenomena as the evolution of drug resistance, vaccine failure, and the ability of viruses to emerge in new host species. Somewhat paradoxically, although a number of population genetic models exist to explain the adaptive process (Fisher 1930; Gillespie 1991; Orr 2002; Rokyta et al. 2005), these usually assume low rates of mutation, which clearly rules out their applicability to RNA viruses. Indeed, it is the
high rate of mutation that distinguishes the population genetics of RNA viruses from that of DNA-based organisms (and which constitutes the major theme of Chapter 4).

In this section, and those that follow, I will show that RNA viruses constitute some of the best-equipped laboratories to study evolution by natural selection. Rather than giving detailed examples of the adaptive process in RNA viruses—which are numerous—I will confine myself to making more general points which help explain their evolution in toto (and some case studies are presented in Chapter 7). In fact, much of what might be called ‘classical virology’ involves the precise exploration of viral adaptation to different hosts and cell types, although this pursuit is usually phrased in a different way. However, as is probably true of any evolutionary system, it is inadvisable to consider the process of natural selection in isolation. To some researchers, both the substitution dynamics of mutant alleles and larger-scale patterns of genome organization are due to the random-sampling effect associated with genetic drift.

3.3.1 Effective population sizes in viral evolution

The basic principles of population genetics tell us that natural selection should be a potent force in viral evolution. Natural selection is expected to dominate the substitution dynamics of mutant alleles when the product $N_e s >> 1$, where N_e is the effective population size and s the selection coefficient (i.e. the fitness effect) of the mutant allele in question. To understand the respective roles of natural selection versus genetic drift in RNA virus evolution therefore merely requires us to determine both N_e and s. Unfortunately, estimating these parameters is thwart with difficulties and often relies on highly unrealistic assumptions. As an extremely important case in point, although there are a variety of population genetic measures of N_e, all assume neutrality, which means that they do not constitute an independent means of assessing the respective powers of selection and drift. For instance, relatively low estimates of N_e have been obtained using coalescent-based methods for acute infections like influenza (Rambaut et al. 2008) (Fig. 3.5) and measles (Pomeroy et al. 2008) that experience population dynamics characterized by distinct epidemic peaks and troughs. However, as these estimates are necessarily based on measures of genetic diversity, it is impossible to disentangle small (neutral) population sizes from successive selective sweeps. In these circumstances it is essential that we turn to our knowledge of viral biology to obtain independent estimates of effective population sizes in nature. Not surprisingly, a major conclusion of this section is therefore that it is impossible to truly understand the dynamics of drift and selection in RNA viruses without estimates of N_e and s in nature, rather than relying on the largely in vitro measures obtained to date. Similarly, while I believe there is at least some data to show that long-term values of N_e are by-and-large great enough to allow natural selection to proceed with vigour, it is dangerous, if not foolish, to think that all viruses behave in the same way. Because N_e and s vary among viruses, so selection and drift are necessarily virus-specific.

Although N_e is notoriously difficult to measure in any system, and viruses are no different, there are good a priori reasons to think that N_e will be large for at least
3.3 Selection, drift, and adaptation

•

Some parts of the life cycle of most RNA viruses. In particular, intra-host population sizes in RNA viruses can be immense, reflecting a large number of infected cells and a high progeny number per cell. For example, in the case of HIV-1 it is estimated that 10^7–10^8 cells may be infected in a typical individual, with some 10^{10} virions produced every day (Perelson et al. 1996), while the equivalent daily production for HCV has been estimated at 10^{12} virions (Neumann et al. 1998). In the case of plant viruses such as TMV, there may be up to 10^{12} virus particles in a single leaf (Gibbs et al. 2008a). Similarly, for poliovirus and perhaps other lytic RNA viruses, the progeny or ‘burst size’ per single infected cell may be on the order of 10^4 (Kew et al. 2005). Although it is clearly dangerous to extrapolate from census population sizes (N) to N_e, particularly as a large proportion of the viruses sampled contain deleterious mutations and therefore produce few progeny, it is fair to assume that at peak viral loads viral populations are large enough to allow strong natural selection.

It is also critically important to recall that, as well as considering intra-host viral loads, RNA viruses exist at an epidemiological scale, which also contributes to their overall population size. The prevalence of viral infections at the epidemiological scale is often far lower than their (peak) intra-host population sizes. For example, while HIV-1 produces 10^{10} virions per day, its global prevalence—the number of
infected hosts—is more like 10^7 (with HCV at 10^8). More dramatically, only a few thousand cases of poliomyelitis are now reported each year, and the virus is endemic in only a few localities. Further, although the number of hosts infected by a virus may be very large (think HIV), the difference between N and N_e at the epidemiological scale may be substantial, and therefore have a major impact on substitution dynamics. In particular, there may be widespread variability in reproductive success at the population level, in part a reflection of transmission mode. For instance, for highly infectious respiratory viruses like influenza there is likely to be relatively little variation in reproductive success among individual viruses: each has a good chance of infecting a new host and continuing the transmission chain. Indeed, influenza virus is thought to infect between 5 and 10% of the world’s population at any one time. In contrast, a far greater variation in reproductive success is expected in the case of sexually transmitted viruses, as humans obviously vary enormously in their sexual behaviours, with superspreaders (Lloyd-Smith et al. 2005), who acquire multiple sexual partners, playing a key role in transmission dynamics. Such large-scale variation in reproductive success will reduce N_e and hence allow genetic drift to act with more potency.

3.3.2 Transmission bottlenecks

Where N_e might be greatly reduced in RNA viruses, and hence the time when genetic drift is expected to be particularly important, is at inter-host transmission. In particular, there is a long-standing and very reasonable idea that the process of inter-host transmission is accompanied by a large population bottleneck, which in turn introduces a major stochastic element into substitution dynamics. In some cases, such as HIV-1, it is even proposed that inter-host transmission can involve single virus particles (Keele et al. 2008). At the low values of N_e associated with inter-host transmission, many slightly deleterious mutations with small selection coefficients that would be purged by selection in large populations will now be subject to the whims of genetic drift, as the product $N_e s$ is expected to be close to zero (Ohta 1992). Transmission bottlenecks may also have a number of secondary effects, including determining some aspects of the evolution of virulence (Bergstrom et al. 1999; Elena et al. 2001). Although it is obvious that inter-host transmission must, normally, involve some sort of population bottleneck, there are few direct estimates of bottleneck sizes in natural viral populations. In addition, the magnitude of the population bottleneck is expected to vary according to the infecting dose, which may itself be a function of transmission mode.

Whereas little is known about natural populations, major bottlenecks are a common occurrence in experimentally manipulated RNA viruses. In this case, studies of plant viruses have proven particularly informative, in large part because of the relative ease of experimental analysis (de la Iglesia and Elena 2007). Important observations in these systems are: (i) the occurrence of major bottlenecks as the virus moves systemically through the plant (Li and Roossinck 2004; Sacristán et al. 2004) and (ii) major bottlenecks during the process of inter-host transmission, particularly
3.3 Selection, drift, and adaptation

•

as mediated by aphid vectors (Ali et al. 2006). Similar population bottlenecks have also been observed during the mosquito stage in the vector-borne RNA viruses that infect animals (Smith et al. 2008). However, what effect these bottlenecks will have on long-term evolutionary dynamics is more difficult to determine, and also depends on the associated values of \(s \). As a case in point, studies in vitro suggest that population sizes as small as five virions are sufficient to allow natural selection to proceed, although this clearly requires mutant alleles that exhibit very different levels of fitness (reviewed in Bergstrom et al. 1999).

Intriguingly, there are a number of indirect studies of viral populations which suggest that transmission bottlenecks in nature may not be as extensive as is often thought. One highly informative case in point concerns DENV. Detailed studies of intra-host genetic diversity revealed that three phylogenetically distinct lineages of DENV-1 were passed successfully among humans and mosquitoes for a number of years (Aaskov et al. 2006), suggesting that transmission bottlenecks are not especially severe. There is also a growing body of data to suggest that mixed infections are a common component of intra-host diversity in influenza A virus, including viruses with differing phenotypes, such as resistance and sensitivity to adamantane drugs (Ghedin et al. submitted). Such frequent mixed infection, including by strains that should induce strong cross-immunity, suggests that individual hosts can receive multiple viruses on transmission. Similarly, that multicomponent viruses by definition require mixed infections to form a fully functional unit again argues against a substantial transmission bottleneck in the case of some plant RNA viruses.

In sum, although we have no clear idea of long-term values of \(N_e \) in RNA viruses, and generalizations are dangerous, there is at least some evidence to suggest that they are sporadically large enough for natural selection to act with great efficiency. This is particularly likely to be the case for RNA viruses whose mode of transmission ensures that they are able to spread through large and well-mixed populations—notably human influenza A virus—and where positive selection is well documented (Fitch et al. 1991). Even if transmission bottlenecks are severe, it is possible that their effects on substitution dynamics are off-set to some extent by the ability to infect very large numbers of hosts, or by undergoing sufficient numbers of replication cycles at high population sizes within hosts (Manrubia et al. 2005). Similarly, that positive selection is so readily detected in RNA viruses indicates that small effective population sizes do not always succeed in putting a break on adaptive evolution.

3.3.3 The dynamics of allele fixation: estimating selection coefficients

As noted at the start of this section, molecular adaptation is commonly described in RNA viruses, although less often in explicit population genetic terms. This is perhaps unfortunate as RNA viruses are one of the few systems where it is possible to obtain reasonable estimates of selection coefficients, largely because evolution is so rapid and often human-mediated. For example, early work on drug resistance in HIV-1, where the frequency of mutant alleles can be measured with and without drug pressure, resulted in estimates of \(s \) of between 0.4 and 2.3% for mutations
conferring sensitivity to zidovudine (Goudsmit et al. 1996). In the case of mutants that adapt VSV to different cell types, \(s \) values of 39% have been estimated (Dutta et al. 2008). Similarly, there have been detailed analyses of positive selection relating to such processes as escape from antibody responses (Wei et al. 2003), escape from T-cell responses (Gog et al. 2003), and the adaptation to new hosts (Anishchenko et al. 2006) and vectors (Tsutsarkin et al. 2007), sometimes through changes in receptor specificity (Suzuki 2006a), and even for increased virulence (Brault et al. 2007). It is also evident that natural selection in RNA viruses can occur at different levels, such as within and between hosts, within individual cells, and at different stages during the viral life cycle (Krakauer and Komarova 2003).

Hence, the rapid pace of RNA virus evolution allows us to visualize stages in the process of allele fixation, a phenomenon most evolutionary biologists can only dream of. This also allows a simple test of natural selection: if mutations are fixed faster than expected by genetic drift, which will take a mean of \(2N_e \) generations in a haploid population (although with a large variance), then it must be that they have done so by positive selection, or that they are in linkage disequilibrium with advantageous mutations (Zanotto et al. 1999; Williamson 2003; Shih et al. 2007). In the hypothetical example in Fig. 3.6, consider an amino acid mutation that is absent in all those sequences sampled from time points \(t_1 \) and \(t_2 \), but present in those viruses sampled from the later time point \(t_3 \), such that it falls on the internal branch linking \(t_2 \) and \(t_3 \). Clearly, this mutation must have arisen at some point between times \(t_2 \) and \(t_3 \), placing the observed process of allele fixation within a specific time period (although distinguishing an allele that has truly fixed from one that has reached high frequency is difficult). For a typical acute RNA virus with an epidemiological generation time (that is, infected host to infected host) of 4 days, and \(N_e \) of 10,000, which may correspond roughly to population sizes during epidemic troughs for infections like measles, the mean expected time to fixation under genetic drift is then \(2 \times 10000 \times 4 \) days, or approximately 200 years. Consequently, if mutations are fixed very much faster than this then it seems reasonable to conclude that positive selection has been involved. Given these parameter estimates it is also possible to obtain approximate values of \(s \) using standard population genetic theory (Zanotto et al. 1999).

Such an analysis of fixation times has provided important insights into the process of CTL escape in HIV. One of the puzzles of intra-host HIV evolution is that although the virus has a remarkable mutational power—such that every individual mutation is generated every single day within each infected patient—the process of CTL escape at single amino acid sites can often take several years. Such a delay is particularly well characterized in the case of individuals who carry the HLA-B27 allele (Kelleher et al. 2001), and raises the question of how a mutation that is obviously of enormous benefit to the virus, and which is made on a regular basis, can take so long to spread? The answer is that CTL epitopes fall in genes that undertake a wide array of functions, including those that are normally subject to strong selective constraints such as those encoding the RT or the capsid. This is clearly true of some of those mutations that occur in the HLA-B27 epitope in the HIV \textit{gag} gene, notably at amino acid residue 264: although these mutations facilitate CTL escape, they also disrupt
key aspects of capsid structure, thereby reducing viral fitness. As a consequence, mutations at this residue have a net deleterious effect. To overcome this fitness cost it is necessary for the virus to fix, effectively simultaneously, compensatory mutations that allow the virus to form a viable capsid structure, in this case at residues 260 and 268, a process clearly visible through phylogenetic analysis (Kelleher et al. 2001) (Fig. 3.6). It is this requirement for compensatory mutations that delays CTL escape, as multiple mutations are now required to occur in the same molecule and without the baggage of deleterious mutations. Indeed, CTL escape mutations with only weak functional constraints generally appear to occur more frequently in HIV (Liu et al. 2007). A similar process has been invoked to explain the constraints to CTL escape in simian immunodeficiency virus (SIV; Friedrich et al. 2004b) and influenza A virus (Berkhoff et al. 2005).

In principle, looking at the process of allele fixation as a way of quantifying adaptive evolution can be applied to a whole range of RNA viruses where the times of sampling are known, although this form of analysis needs to be reformulated in more rigorous mathematical terms. The largest compounding factor is genetic linkage. For clonally evolving RNA viruses, or individual viral segments, it will often be difficult, if not impossible, to determine which of those amino acid changes that appear on a specific branch are positively selected as all share a single evolutionary pattern. In these circumstances additional information is required to determine evolutionary processes, such as whether the mutations fall in known epitopes or antigenic sites (Wolf et al. 2006; Shih et al. 2007).
3.3.4 The importance of hitch-hiking

An interesting example of how linkage—hitch-hiking—can confound the analyses of site-specific selection pressures was recently documented in human influenza A virus (Simonsen et al. 2007). Here, isolates of H3N2 influenza virus have, since 2005, acquired resistance to adamantanes (amantadine and rimantadine), a class of first-generation antiviral drugs often deployed against influenza. The pace with which this resistance has evolved is dramatic: in the 2005–2006 influenza season in the USA more than 90% of influenza A viruses sampled were adamantane-resistant, a rise from only approximately 15% in the 2004–2005 season (Bright et al. 2005, 2006; Hayden 2006) (Fig. 3.7). Adamantane resistance is due to a single Ser (S)→Asn (N) amino acid replacement at position 31 in the M2 protein of influenza A virus, which functions as an ion channel. Although the S31N mutation could confer sufficient selective advantage to facilitate its spread in parts of South-east Asia where over-the-counter drug use is relatively common (Bright et al. 2005), such direct selection pressure cannot apply to most nations, including the USA, where the use of adamantanes is limited. The explanation for the dramatic rise of adamantane resistance on a global scale in the absence of drug pressure is hitch-hiking. A phylogenetic analysis revealed that the viral lineage conferring adamantane resistance was generated by a complex reassortment event (Simonsen et al. 2007), during which the S31N mutation most likely became linked, by chance, to advantageous mutations located elsewhere in the viral genome that were selected for a different reason, such as immune escape.

Fig. 3.7 The evolution of adamantane resistance in H3N2 human influenza A virus. (a) Rise in prevalence of adamantane resistance (diamonds) in comparison to the number of drug doses used in the USA. (b) Schematic representation of the pattern of phylogenetic incongruence suggestive of a 4+4 segment reassortment event. The reassortant adamantane-resistant viruses, characterized by the S31N mutation in the M2 protein, are denoted the N-lineage. Adapted from Simonsen et al. (2007) with permission.
3.3 Selection, drift, and adaptation

3.3.5 Patterns of synonymous and nonsynonymous evolution

In many respects, measures of selective pressure based on fixation times are more informative in the peculiar case of RNA viruses than \(d_N/d_S \) ratios (the ratio of nonsynonymous to synonymous substitutions per site), even though the latter have commonly (and often successfully) been used to study adaptive evolution in these infectious agents. It is sometimes forgotten that \(d_N/d_S \) methods were originally designed for inter-species sequence comparisons in which the nucleotide changes observed between species reflect fixed substitutions (Nei and Gojobori 1986). However, in the case of RNA viruses there is mounting evidence that \(d_N/d_S \) values are often elevated towards the tips of phylogenetic trees, representing transient deleterious mutations that will eventually be removed by purifying selection (Pybus et al. 2007; section 3.4). In addition, although analysis of \(d_N/d_S \) provides a useful overview of the selection pressures that act on gene sequences, and which explains their popularity, it is also the case that attempts to use \(d_N/d_S \) to infer positive selection on individual amino acid sites or branches are inherently difficult (Kosakovsky Pond and Frost 2005), have a potential for false-positive results if not used with care (Suzuki and Nei 2002a), and are confounded by such factors as extensive variation in nucleotide composition and recombination, a non-independence of sites, and a lack of selective neutrality at synonymous sites (Anisimova et al. 2003; Novella 2003; Novella et al. 2004b; Kryazhimskiy et al. 2008). Measures of \(d_N/d_S \) are also inherently conservative in that they generally require the repeated fixation of nonsynonymous changes at individual sites to infer the action of positive selection. The occurrence of single beneficial amino acid changes on individual lineages are far harder to detect, even though many of the adaptive mutations that underpin cross-species transmission are likely to fall into this category (Anishchenko et al. 2006).

Yet, irrespective of how selection pressures are measured, and even accounting for the complex effects of genetic linkage, it is clear that RNA viruses are perhaps the class of organism where adaptive evolution has been most readily identified (Yang and Bielawski 2000). Indeed, the interaction between RNA viruses and their hosts constitutes a classic evolutionary ‘arms race’. In addition, viruses like HIV have proven important testing grounds for new methods to measure selection pressures (Kosakovsky Pond et al. 2006), while the occurrence of positive selection in host genomes constitutes a simple and powerful way to detect genes with antiviral functions (Sawyer et al. 2004; Obbard et al. 2006).

3.3.6 Natural selection and transmission mode

One of the most consistent observations in studies of the adaptive process in RNA viruses is that selection pressures differ according to whether the virus is vector-borne or transmitted by some other means. Specifically, those viruses that are transmitted by aphid, mosquito, or tick vectors are subject to stronger purifying selection (and weaker positive selection) than those viruses that are transmitted without the assistance of arthropod vectors, and therein evolve more slowly at nonsynonymous
Fig. 3.8 Increased purifying selection on vector-borne RNA viruses compared to those RNA viruses transmitted by other routes. Selection pressure is measured as the mean value of the number of synonymous (d_s) and nonsynonymous (d_N) substitutions per site (ratio d_N/d_s). Data taken from Chare and Holmes (2004) and Woelk and Holmes (2002).
3.3 Selection, drift, and adaptation

• 65

sites (Fig. 3.8). Importantly, such ‘constrained’ evolution of vector-borne RNA viruses holds true for those that infect both animals and plants (Chare and Holmes 2004), and has been demonstrated in vitro (Scott et al. 1994; Weaver et al. 1999; Greene et al. 2005), in vivo (Jerzak et al. 2005; Coffey et al. 2008), and using comparative analyses (Woelk and Holmes 2002; Chare and Holmes 2004). This important evolutionary pattern undoubtedly reflects the inherent difficulties in infecting hosts and cell types that are so phylogenetically divergent: mutations that increase fitness in one environment, such as mammalian cells, decrease fitness in another environment, such as insect cells. The streamlined genomes possessed by RNA viruses mean that such antagonistic pleiotropy, and fitness trade-offs in general, are expected to be a relatively common occurrence (Elena 2002).

As well as influencing the rate at which nonsynonymous mutations are fixed in RNA viruses transmitted by vectors, antagonistic pleiotropy might also have a major bearing on the process of host switching, the main mechanism of viral emergence, as different hosts may represent very different selective environments (Duffy et al. 2006). As discussed in detail in Chapter 6, understanding the evolutionary processes that underpin viral emergence is a major theme in current work on infectious diseases. Generalities are few and far between in this area. However, one of the strongest is that although a frequent cause of spill-over infections, vector-borne RNA viruses are statistically less likely to evolve sustained transmission cycles in new host species (M. Woolhouse, personal communication). Antagonistic pleiotropy provides a powerful explanation: vector-borne RNA viruses inhabit a world dominated by evolutionary trade-offs, so that most (if not all) mutations will have a major bearing on fitness. Hence, those mutations that are needed to confer adaptation to a new mammalian host are likely to have a detrimental effect on some other component of fitness, resulting in a major adaptive constraint. As a consequence, vector-borne viruses may only be able to spread successfully in new host species if these hosts are phylogenetically similar, thereby minimizing the number of advantageous mutations required.

3.3.7 Escape from intrinsic immunity

Some of the most interesting examples of positive selection acting on RNA viruses described in recent years involve what might be called the ‘intrinsic’ host immune response (or, alternatively, intracellular ‘restriction factors’). Of these, that involving the APOBEC3G (apolipoprotein B-editing catalytic polypeptide) gene—a remarkable anti-retroviral response of primates (Mangeat et al. 2003)—has generated the most interest. APOBEC3G (and its anti-retroviral relative APOBEC3F) is a member of a family of genes that are involved in the editing of RNA and/or DNA through the deamination of cytosine. When directed to the reverse-transcription step of the HIV life cycle, APOBEC3G induces monotonous G→A mutations, a phenomenon known as G→A hypermutation, and which had been observed by HIV researchers for many years without a clear understanding of its basis (Vartanian et al. 1991). Such G→A hypermutation results in the generation and incorporation of multiple deleterious
mutations that have a fatal impact on key viral functions. As these distinctive mutational signatures have also been observed in human endogenous retroviruses (HERVs), it is possible that APOBEC3G has been functioning as an anti-retroviral agent for millions of years (Armitage et al. 2008). In an analogous manner, the TRIM5α gene is able to induce to a cytoplasmic barrier to some retroviral infections, restricting HIV infection in Old World monkeys (Stremlau et al. 2004).

Not only do the genes involved in intrinsic immunity constitute interesting and informative examples of natural selection in their own right but, more broadly, they show that the innate immune response can be subject to as strong positive selection as that which occurs on antibodies and T cells (Sawyer et al. 2004, 2007). They also represent beautiful examples of the intensity of the virus/host arms race. As a case in point, despite the potent affect of APOBEC3G, HIV-1 has evolved an anti-APOBEC3G response controlled by the vif gene (Sheehy et al. 2002). A strong prediction for the future is that more intrinsic immunity genes will be discovered.

The arms race between RNA viruses and host intrinsic immunity is not restricted to mammals. A similar evolutionary phenomenon is observed in the genes involved in RNA interference (RNAi), and which appear to represent a front-line defence against viral infections in plants and invertebrates (Wilkins et al. 2005; Wang et al. 2006; Marques and Carthew 2007; Gibbs et al. 2008a). That RNAi has such an important antiviral role in these organisms, but has not been clearly observed (at the time of writing) in vertebrates, suggests that in some sense it compensates for the lack of a truly adaptive immune system. Further, in an analogy with APOBEC3G, RNAi represents a simple way in which a method to control post-transcriptional gene expression has been co-opted as an antiviral strategy. In the case of RNAi, the targets are the dsRNA molecules that are an obligatory by-product of RNA virus replication (excluding retroviruses). The virus/RNAi arms race is best described in Drosophila, in which the genes involved are among the most rapidly evolving in these species (Obbard et al. 2006).

3.3.8 Strictly neutral evolution in RNA viruses?

Early analyses of rates of nucleotide substitution in a limited number of viruses suggested that a significant component of viral evolution was likely to be neutral, because of the apparently clock-like increase in genetic diversity (Gojobori et al. 1990; Sala and Wain-Hobson 2000). However, clock-like evolution as quantified using simple regression measures can also be observed under selective regimes (Fitch et al. 1991), and more recent analyses utilizing far larger numbers of sequences have found widespread rate variation among viral lineages, such that a strict molecular clock is often rejected (Jenkins et al. 2002). More fundamentally, whether or not viral evolution proceeds in a clock-like manner in reality constitutes a poor test of the neutral theory, as it both deals with long-term averages and fails to account for the differences in generation times among viruses.
3.3 Selection, drift, and adaptation

At the amino acid level, it is likely that few strictly neutral mutations \((s=0)\) occur in RNA viruses, particularly given the extensive epistasis and pleiotropy that characterize their evolution (see section 3.5). Indeed, biophysical studies suggest that little protein evolution in general can be considered strictly neutral (DePristo et al. 2005). Further, the low rates of recombination observed in many RNA viruses mean that the evolutionary fate of any neutral mutation is inextricably linked to those mutations that are either removed by strong purifying (background) selection or which are swept to fixation. In those RNA viruses, or genome segments, that evolve asexually, the classification of individual mutations as selectively neutral may therefore have little meaning.

As in any genetic system, the most likely class of neutral sites in viral genomes are those that do not code for protein. In eukaryotes, a number of different types of DNA sequence may fall into this category, including introns, inter-genic DNA, pseudogenes, and synonymous sites, although selection in some of these classes has been observed (Eyre-Walker 1999; Chamary and Hurst 2004; Plotkin et al. 2004; Andolfatto 2005; Eyre-Walker and Keightley 2007). For RNA viruses, introns are very rare (see Cubitt et al. 2001 for one example), as are truly functionless regions of non-coding RNA and pseudogenes, which in itself argues against a major role for genetic drift (see Chapter 5) (suggestions of a pseudogene in rabies virus have not withstood more detailed analysis; Ravkov et al. 1995). As a consequence, the only major class of sites that might fall into the neutral category are synonymous ones. Although there is obviously extensive inter-virus and inter-genic variation, a general picture seems to be that, on average, levels of synonymous variation are far higher than those observed at nonsynonymous sites (Jenkins et al. 2001b, 2002; Woelk and Holmes 2002), as expected if the average selection coefficient is less than that at nonsynonymous sites (Fig. 3.9). Of course, this does not necessarily mean that synonymous sites are strictly neutral, although they may behave as such when \(N_e\) is small and, as I have argued above and will below, there is growing evidence that synonymous changes may have a major impact on fitness.

In theory, synonymous sites can possess a number of important functions, including containing signals for promotion, transcription, and encapsidation. If a generality can be made, it is that there is increasing evidence that many synonymous sites evolve in a blatantly non-neutral manner (Novella 2003; Novella et al. 2004b). A powerful example was recently documented in influenza A virus in which synonymous mutations in the PB2 polymerase gene were shown to have a major impact on viral packaging, such that these sites were normally highly conserved (Marsh et al. 2008). These special functional properties notwithstanding, the two most obvious types of natural selection that might act on synonymous sites are those caused by RNA secondary structure and by codon usage bias. As the role of RNA secondary structure is discussed in more detail in section 3.5, a simple summary statement—that there is also mounting evidence for its importance in viral evolution—will suffice now. In what follows, I consider codon usage bias in rather more detail.
3.3.9 Determinants of codon bias (and nucleotide composition) in RNA viruses

By far the most common way to explore the nature of selection pressures acting on synonymous sites, and of assessing the relative strengths of genetic drift and natural selection more generally, is to determine the extent and causes of biases in codon usage. Under neutral models codon usage bias simply reflects the background mutational bias. Although a variety of selective models for codon choice have been proposed (Qin et al. 2004), the most popular is that optimizing the match between codon and anti-codon will enhance the accuracy and/or efficiency of the translational machinery, particularly in highly expressed genes (Bulmer 1987). If a general conclusion can be drawn from the analysis of codon bias in other organisms it is that natural selection is most able to shape the substitution dynamics of synonymous codons, which are likely to be characterized by small selection coefficients, when effective population sizes are sufficiently large, as in bacterial populations (Ikemura 1985; Sharp and Matassi 1994), their DNA bacteriophages (Lucks et al. 2008), and Drosophila (Akashi 1994).

Traditionally, analyses of codon usage bias have played only a minor role in studies of RNA virus evolution. This is in part a reflection of the fact that viruses
must utilize the host translation machinery, so codon usage bias in viruses should, at least to some respect, match that of the host organism. However, because RNA viruses only infect particular cell types within a host, and host codon biases—in mammals at least—are often tissue-specific (Plotkin et al. 2004), knowing the overall codon bias in host species is insufficient for determining the cell-specific selection pressures that might act on viruses. Similarly, host-induced mutational biases caused by APOBEC3G-like mechanisms will also complicate the analysis of codon usage.

The small number of studies of codon usage bias in RNA viruses undertaken to date suggest that codon choice is mainly determined by mutation pressure (Adams and Antoniw 2003; Jenkins and Holmes 2003). In particular, while RNA viruses often exhibit strong biases in codon usage, the nucleotides utilized as synonymous codons tend to match the nucleotide biases across the viral genome as a whole (Fig. 3.10). Although this suggests a generally weak role for natural selection in determining the choice of individual codons, it is possible that the overall nucleotide composition in RNA viruses is itself selectively determined, and that codon usage is just one manifestation of this larger-scale selection. Indeed, experimentally altering synonymous codon usage in poliovirus had a major effect on viral fitness, even resulting in attenuation (Coleman et al. 2008).

In further support of a role for natural selection in determining codon choice are observations of major host-specific differences in nucleotide composition among RNA viruses (Greenbaum et al. 2008), which are particularly apparent when viruses jump species (Rabadan et al. 2006). For example, a measurable change in nucleotide composition occurs coincident with the cross-species transmission of influenza.

![Fig. 3.10](#) The extent of codon usage bias in selected human RNA viruses measured using the effective number of codons (N_c) statistic and compared with the genome-wide G+C content at synonymous third-codon positions ($G+C_{3S}$). Each square represents a different virus and the curved line indicates the codon usage bias expected under the constraints of nucleotide composition alone. Taken from Jenkins and Holmes (2003) with permission.
A virus from birds to mammals, and which may reflect differences in the core body temperatures between these species that in turn affect thermodynamic stability, or selection for escape from innate immune responses (Greenbaum et al. 2008). Further, nucleotide compositions can vary extensively within individual viral families, such as the Flaviviridae, perhaps reflecting differences in the host and/or vector species utilized (Jenkins et al. 2001a). For example, in the case of the flaviviruses a significantly higher GC content was observed in non-vector-borne compared to tick-borne flaviviruses, with intermediate values in those viruses transmitted by mosquitoes (Jenkins et al. 2001a). More directly, a recent analysis of insect RNA viruses revealed that unrelated viruses infecting honey bees converged on the same pattern of codon usage, indicative of a strong host-species effect (Chantawannakul and Cutler 2008). Although a host-specific pattern of nucleotide composition could equally reflect large-scale mutational bias in the absence of natural selection, especially as RNA viruses must utilize host nucleoside triphosphate (NTP) pools as they replicate, the possibility that the overall nucleotide compositions of RNA viruses have been selectively optimized should clearly be assessed, particularly as more host transcriptomes become available for study.

3.4 Deleterious mutation and RNA virus evolution

Although I have spent a good deal of time considering the ins and outs of adaptation, arguably the most profound observation stemming from experimental and comparative studies of RNA virus evolution is that most mutations arising during replication—and perhaps the vast majority at nonsynonymous sites—are deleterious, and so will only persist for short time periods before being removed by purifying selection. As a simple example, it is estimated that only about 1% of poliovirus virions released from a cell are able to complete a full replication cycle (Krakauer and Komarova 2003), a proportion that may be common to many RNA viruses. Consequently, it is not simply the mutational power of RNA viruses that determines whether they are able to adapt to new environments, but the percentage of these mutations that increase fitness relative to those that decrease it.

A high rate of deleterious mutation in RNA viruses can be inferred from a number of observations. Most directly, there have been several experimental measurements of the deleterious mutation rate per generation (U). The rates inferred from these studies are usually on the order of $U=1$ (Elena and Moya 1999; Gao et al. 2004) and hence similar to overall mutation rates (section 3.1). This further supports the notion that the vast majority of mutations produced during viral replication are deleterious. Similarly, analyses of the fitness spectrum of random mutations arising in experimental populations of VSV reveal that approximately 40% can be considered lethal in single cell types, with most (≈30%) of the others falling into the deleterious class, although often with fitness values close to the neutral expectation (so that the fitness distribution of deleterious mutations is bimodal) (Sanjuán et al. 2004b) (Fig. 3.11). Interestingly, over 25% of mutations could be considered neutral, with less than 5% as beneficial under
3.4 Deleterious mutation

•

the particular assay system used. A similarly high frequency of deleterious mutations was observed in experimental analysis of plant viruses (Malpica et al. 2002). An extensive literature review undertaken by Santi Elena and colleagues revealed that the median selection coefficient against single mutations in RNA viruses was 10.8%, and hence far greater than that (1.7%) seen in DNA-based organisms, where more mutations are classed as selectively neutral (Elena et al. 2006). Such a burden of deleterious mutations argues against the existence of expansive ‘neutral spaces’ in RNA virus evolution. A high rate of deleterious mutation can also be inferred through various comparative analyses. In particular, a survey of the structural genes of 140 RNA viruses revealed a large excess of nonsynonymous changes on the tips of phylogenetic trees (Pybus et al. 2007) (Fig. 3.12), as expected for transient deleterious mutations, and independent of genome architecture.

In sum, it is possible to imagine RNA viruses as bacterial mutators gone mad: whereas their extremely high mutation rates allow them to rapidly generate the genetic variation needed to adapt to changing environments, and natural selection can be extremely effective in achieving this, it comes at the cost of producing a multitude

<table>
<thead>
<tr>
<th></th>
<th>Random</th>
<th>Pre-observed</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Proportion, %</td>
<td>Effect, %</td>
<td>Proportion, %</td>
</tr>
<tr>
<td>Lethal</td>
<td>39.6 (19)</td>
<td>-100</td>
<td>11.6 (5)</td>
</tr>
<tr>
<td>Deleterious</td>
<td>29.2 (14)</td>
<td>-24.4</td>
<td>41.9 (18)</td>
</tr>
<tr>
<td>Neutral</td>
<td>27.1 (13)</td>
<td>-3.8</td>
<td>32.6 (14)</td>
</tr>
<tr>
<td>Beneficial</td>
<td>4.2 (2)</td>
<td>4.2</td>
<td>14.0 (6)</td>
</tr>
<tr>
<td>Total</td>
<td>100 (48)</td>
<td>-47.6</td>
<td>100 (43)</td>
</tr>
</tbody>
</table>

Fig. 3.11 The fitness spectrum of single point mutations in experimental populations of VSV. (a) Table showing the proportion (and number in parenthesis) of mutations falling into different fitness categories for both random and previously described single point mutations in VSV. The mean fitness is shown in each case. The figures below show the frequency of fitness values associated with (b) random single point mutations, and (c) previously described single point mutations. Adapted from Sanjuán et al. (2004b) with permission.
of defective progeny. To my mind, the only way that RNA viruses can survive with such a mutational burden is to have extremely large population sizes in the long term, reflected in high rates of viral production per cell, many infected cells within an individual host, and a multitude of infected hosts. Crucially, and in clear

Fig. 3.12 Frequency of transient deleterious mutations in RNA virus evolution. The DNS is the deviation from neutrality statistic which reflects the difference in \(d_N/d_S \) values on internal and external branches of phylogenetic trees. (a) The frequency distribution of DNS values under simulated neutrally evolving data. (b) The frequency distribution of DNS values in the structural genes of 143 RNA viruses (the same data as used in Fig. 3.9). The positive DNS values on external branches reflect an increase in the number of nonsynonymous mutations, indicative of transient deleterious mutations. Adapted from Pybus *et al.* (2007) with permission.
contrast to the situation seen in bacteria, viruses with high deleterious rates do not experience competition with viruses that have greatly increased fidelity and which are expected to dominate in stable environments. As I have already noted, as substantial improvements in polymerase fidelity seem extremely difficult to achieve, it is likely that all RNA viruses are equally weighed down by a high deleterious mutation rate.

3.4.1 Deleterious mutation and intra-host genetic diversity

The heavy burden of deleterious mutations in the short term, manifest as high d_N/d_S values on the tips of phylogenetic trees, is also apparent in the few studies of mutational patterns within and among hosts that have been undertaken to date. DENV is particularly informative in this respect, with abundant nonsynonymous mutations observed at the intra-host level: in many cases intra-host d_N/d_S is close to 1.0 (Holmes 2003a; Chao et al. 2005; Table 3.1), which is exactly as expected if we were to observe the mutational spectrum prior to the action of natural selection, either positive or negative. In addition, the amino acid changes observed are generally singletons, falling once in the alignment, and occur at sites that are normally invariant at the population level, as expected if they represent transient deleterious mutations. In contrast, far lower d_N/d_S ratios—in the region of 0.1—are observed at the inter-host level (Holmes 2003a). Hence, there is a massive purging of nonsynonymous mutations as the virus moves among hosts, again as predicted if the majority of these mutations are deleterious. Indeed, approximately 90% of the nonsynonymous mutations in DENV that occur within hosts may be deleterious (Holmes 2003a). A similar pattern was observed in West Nile virus (WNV), in which d_N/d_S ratios were 5-fold greater within than among hosts, although in all cases d_N/d_S was less than 1.0, indicating that some purifying selection had occurred within hosts (Jerzak et al. 2005). The same story can also be told for in vivo (inter-host) versus in vitro comparisons of FMDV (Carrillo et al. 2007), and in some plant RNA viruses (Teycheney et al. 2005). More generally, that rates of nucleotide substitution tend to be higher in the short term than the long term, as appears to be the case in a number of RNA viruses including WNV (Bertolotti et al. 2008), GBV-C (Romano et al. 2008), and the rodent hantaviruses (Ramsden et al. 2008), is compatible with the idea that intra-host viral populations still contain a significant number of transient deleterious mutations that have yet to be purged by purifying selection.

The transient deleterious mutations observed in RNA viruses not only involve point mutations, stop codons, and indels. It is also possible that novel recombinants represent at least some of the mutations in the deleterious class, in part explaining why this process has often been difficult to observe in viral populations where only consensus sequences are generated. For example, in the case of DENV, the in-depth analysis of genetic diversity within single patients not only uncovered viruses of differing genotypes, but multiple recombinants among them (Aaskov et al. 2007).
The mechanisms of RNA virus evolution

3.4.2 The importance of defective interfering particles and complementation

The importance of deleterious mutation in RNA virus evolution can also be inferred from one of the most intriguing observations stemming from ‘classical’ experimental virology: that deleterious mutation produces defective viral genomes that can

Table 3.1 Measures of intra-host genetic diversity in the E gene of DENV.

<table>
<thead>
<tr>
<th>Data set</th>
<th>No. of clones</th>
<th>Genetic diversity (%)</th>
<th>Mean d_S/d_S</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1.Myanmar.Mos059/01</td>
<td>20</td>
<td>1.0</td>
<td>0.52</td>
<td>Aaskov et al. (2006)*</td>
</tr>
<tr>
<td>D1.Myanmar.Mos194/01</td>
<td>20</td>
<td>1.5</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>D1.Myanmar.Mos206/01</td>
<td>10</td>
<td>2.3</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>D1.Myanmar.Mos305/01</td>
<td>20</td>
<td>0.9</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>D1.Myanmar.37045/00</td>
<td>20</td>
<td>0.4</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>D1.Myanmar.38518/01</td>
<td>20</td>
<td>1.3</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>D1.Myanmar.40530/01</td>
<td>20</td>
<td>1.2</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>D1.Myanmar.40906/01</td>
<td>20</td>
<td>0.8</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>D1.Myanmar.43549/01</td>
<td>20</td>
<td>0.4</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>D1.Myanmar.43826/01</td>
<td>20</td>
<td>0.4</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>D1.Myanmar.47185/02</td>
<td>20</td>
<td>0.9</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>D1.Myanmar.47662/02</td>
<td>20</td>
<td>0.7</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>D1.Myanmar.48572/02</td>
<td>20</td>
<td>0.6</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>D1.Myanmar.49440/02</td>
<td>20</td>
<td>0.9</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>D1.Myanmar.50457/02</td>
<td>20</td>
<td>1.2</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>D2.Myanmar.32309/98</td>
<td>14</td>
<td>0.1</td>
<td>0.85</td>
<td>Craig et al. (2003)</td>
</tr>
<tr>
<td>D2.Myanmar.35004/99</td>
<td>12</td>
<td>0.1</td>
<td>2.00</td>
<td></td>
</tr>
<tr>
<td>D2.Myanmar.36273/00</td>
<td>11</td>
<td>0.2</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>D2.Myanmar.Mos196/00</td>
<td>20</td>
<td>0.3</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>D2.Myanmar.Mos025/00</td>
<td>20</td>
<td>0.3</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>D2.Myanmar.Mos376/00</td>
<td>17</td>
<td>0.2</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>D3.Taiwan.ID3/98</td>
<td>17</td>
<td>0.1</td>
<td>0.42</td>
<td>Wang et al. (2002)</td>
</tr>
<tr>
<td>D3.Taiwan.ID7/98</td>
<td>10</td>
<td>0.1</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>D3.Taiwan.ID8/98</td>
<td>11</td>
<td>0.4</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>D3.Taiwan.ID11/98</td>
<td>10</td>
<td>0.8</td>
<td>3.36</td>
<td></td>
</tr>
<tr>
<td>D3.Taiwan.ID15/98</td>
<td>10</td>
<td>0.1</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>D3.Taiwan.ID20/98</td>
<td>11</td>
<td>0.3</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>D3.Taiwan.1F/98</td>
<td>26</td>
<td>0.6</td>
<td>2.04</td>
<td>Chao et al. (2005)</td>
</tr>
<tr>
<td>D3.Taiwan.1H/98</td>
<td>21</td>
<td>0.8</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>D3.Taiwan.2F/98</td>
<td>18</td>
<td>0.7</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>D3.Taiwan.2H/98</td>
<td>25</td>
<td>1.2</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>D3.Taiwan.3F/98</td>
<td>23</td>
<td>0.7</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>D3.Taiwan.3H/98</td>
<td>23</td>
<td>0.9</td>
<td>1.46</td>
<td></td>
</tr>
<tr>
<td>D3.Thailand.D92.431/92</td>
<td>20</td>
<td>0.2</td>
<td>0.52</td>
<td>Wittke et al. (2002)</td>
</tr>
<tr>
<td>Overall mean</td>
<td></td>
<td>0.7</td>
<td>0.86</td>
<td></td>
</tr>
</tbody>
</table>

* Some of the viruses from the Aaskov et al. (2006) study are especially diverse because they harbour a defective stop codon lineage.
† The estimate of mean d_S/d_S in this case is only approximate.
3.4 Deleterious mutation

‘interfere’ with the growth of fully functional viruses by competing with them during replication. These are referred to as defective interfering (DI) particles, and they have been observed in cell culture (Huang and Baltimore 1970) and sometimes in vivo (Holland and Villarreal 1975), and especially at high multiplicity of infection (MOI) when a single cell is infected by more than one virus. Indeed, DI particles are likely to be a common occurrence in many RNA viruses. Despite their name, the success of DI particles seems to be built more on out-growth than true interference. As a particular case in point, the greater the proportion of DI particles, the lower the total yield of poliovirus (Cole and Baltimore 1973). While DI particles are usually thought to contain long deletions (perhaps up to 90% of the genome), which gives them a replication advantage, in theory any deleterious mutation can fall into this class.

The classic explanation for the maintenance of DI particles is complementation, in which defective viruses effectively parasitize fully functional viruses that co-infect the same cell, utilizing their complete complement of proteins to complete their own life cycle and continue their existence (which is why they are most common at high MOI values). For viruses that undergo frequent recombination or reassortment, a second possible cost of DI particles (aside from reducing viral yield) is that a fully functional virus could reduce its fitness by undergoing recombination with a DI particle, in so doing acquiring a deleterious mutation in a manner other than through simple point mutation alone. Indeed, an important evolutionary cost of complementation as a whole is that it allows deleterious mutations to persist for extended periods (Froissart et al. 2004), although given the very high deleterious mutation rate in RNA viruses this additional cost may not be excessive.

Although their name implies that DI particles are usually a hindrance to co-infecting functional viruses, it is theoretically possible that they are on occasion beneficial. In particular, if a DI particle is able to initiate infection of a new host cell, and if this cell is then subject to an immune response, the host will have deployed some of its finite immune resources against a virus that could never produce functional progeny. In these circumstances DI particles can be considered as inadvertent immune ‘decoys’, although it is difficult to see how this phenomenon could have evolved by natural selection.

3.4.3 Complementation may be commonplace in RNA viruses

Complementation is an increasingly common observation in RNA viruses (see, for example, Geigenmüller-Gnirke et al. 1991; Mansky et al. 1995; Moreno et al. 1997; Tzeng and Frey 2003; Wilke and Novella 2003; García-Arriaza et al. 2004; Smallwood et al. 2002; Appel et al. 2005). Indeed, at high MOI values complementation is a predictable and important genetic process, although its true evolutionary significance has yet to be fully appreciated (García-Arenal et al. 2003). As noted above, complementation allows defective viruses to persist by ‘stealing’ the proteins of co-infecting functional viruses, an ability that seems to decline with the extent of genetic divergence among them (Simon et al. 1995). Although there is evidence that some viruses have evolved mechanisms to prevent the superinfection of individual cells, including HIV (Geleziunas et al. 1994) and influenza A virus (Huang et al. 2008), that
recombination/reassortment occurs frequently in these viruses indicates that these barriers are not absolute. Complementation, in the broad sense, is also the mechanism by which the individual particles of multicomponent RNA viruses are able to reproduce successfully (Chao 1991).

Until recently, complementation had only ever been observed in vitro, and DI particles were only thought to survive a few generations through complementation. This is expected as DI particles are obviously defective, and their continued survival is critically dependent on a high MOI of functional viruses. However, more recent studies, including some comparative analyses, suggest that complementation is likely to be frequent in nature (Froissart et al. 2002) and may extend over very long time periods (Aaskov et al. 2006). More importantly, as complementation can also be thought of as a type of buffer against deleterious mutation, a high frequency of complementation will reduce selection for mutational robustness (Montville et al. 2005).

Simple, yet unappreciated, evidence for the action of complementation in RNA viruses are the occurrence of premature stop codons within consensus sequences, and which are readily available on GenBank. A stop codon, or any other clearly defective mutation, will only be present in a consensus sequence when it represents the majority form at any nucleotide site. By default, misplaced stop codons in consensus sequences signify defective mutations at high frequency, which in turn implies complementation, although some may also be read through by the RNA polymerase (a process which is commonplace in some alphaviruses).

It is this same logic that indicates that complementation may allow defective mutations to survive for extended time periods, including multiple rounds of inter-host transmission. The most compelling example is a lineage of DENV-1 collected over a period of 18 months in Myanmar (formerly Burma) that contained a stop codon in the E (envelope) gene and a variety of other apparently deleterious nonsynonymous mutations (Aaskov et al. 2006) (Fig. 3.13). As additional population genetic and biochemical analyses confirmed that this stop codon lineage was indeed defective, the only viable explanation for its survival over multiple cycles of human–mosquito transmission is complementation. Specifically, in conditions of frequent viral transmission, as might characterize regions of South-east Asia where DENV is at very high prevalence, the multiple infection of individual hosts and cells is so commonplace that complementation becomes an important evolutionary process. The outstanding question is whether this defective lineage of DENV is a ‘hyper-parasite’, praying on the abundance of functional viruses that happen to co-infect a single cell, or whether it is in some way beneficial to the co-infecting functional virus, perhaps by producing a subgenomic RNA that provides an additional function (García-Arriaza et al. 2004). Finally, that this stop codon lineage was effectively ‘hidden’ by the consensus sequence also highlights the importance to undertaking in-depth analyses of intra-host genetic variation. This is the theme of section 3.6. Indeed, the transmission of multiple lineages hidden by a dominant consensus sequence has also been observed in WNV (Jerzak et al. 2005), one of the few other viruses for which extensive intra-host sequence data are available.
3.5 Epistasis in RNA virus evolution

Most phylogenetic studies of RNA virus evolution have assumed that each site, be it nucleotide or amino acid, evolves independently. Indeed, the assumption that nucleotide sites are independent random variables is a common component of models of molecular evolution. However, there is now abundant evidence, both experimental and comparative, that the nucleotides and amino acids of RNA viruses interact in a variety of complex plays. As a simple case in point, both protein and RNA secondary structures may be ubiquitous in the genomes of RNA viruses, generating frequent compensatory mutations (Sanjuán et al. 2005). These properties, along with the

Mutations:
1 = E242 - T to S
2 = E248 - Q to stop
3 = E269 - E to G
4 = E316 - Q to R
5 = E363 - K to N
6 = E373 - S to P
7 = E417 - D to G
8 = E458 - G to E

Fig. 3.13 Evolution of the defective (stop codon) lineage of DENV-1 sampled in Myanmar (Burma) between 2000 and 2002. The phylogenetic distribution of the eight amino acid mutations in the E gene associated with the stop codon lineage are shown, including the termination codon at E248, as are the selection pressures (d_S/d_s) of this compared to the functional ‘wild-type’ lineage of DENV-1. The phylogenetic position of a second variant lineage, ‘hidden’ by the consensus sequence, is also shown. Adapted from Aaskov et al. (2006) with permission.
highly compact nature of viral genomes, the use of overlapping reading frames, and frequent pleiotropy, also mean that epistatic interactions are predicted to be commonplace in RNA virus evolution (Holmes 2003b). Such epistatic effects can be either antagonistic or synergistic, depending on the direction of deviation from multiplicative fitness effects: antagonistic epistasis reduces the effect of combined mutations on fitness, whereas synergistic epistasis increases this effect (see Michalakis and Roze 2004 for an informative discussion in the context of RNA viruses). Understandably, determining the rules of epistasis is one of the most important problems in contemporary evolutionary genetics (Azevedo et al. 2006; Martin et al. 2007).

3.5.1 Epistasis and robustness

Although measuring the extent and sign (positive or negative) of epistasis is challenging, the emerging consensus from studies of this process in RNA viruses, particularly through experimental studies, is that most epistatic interactions are antagonistic (Bonhoeffer et al. 2004; Burch and Chao 2004; Sanjuán et al. 2004c, 2006b; Sanjuán 2006; de la Iglesia and Elena 2007; Pepin and Wichman 2007). Importantly, the general lack of evidence for synergistic epistasis provides a strong argument against the mutational deterministic hypothesis for the evolution of recombination in RNA viruses (Bonhoeffer et al. 2004).

The seminal work on epistasis in RNA viruses has been undertaken by Santi Elena and Rafa Sanjuán (and colleagues) from Valencia, Spain, who in a beautiful series of experiments have measured not only the fitness of individual mutations (Sanjuán et al. 2004b, 2006a), but also how they interact, with antagonistic epistasis again the most common observation (Sanjuán et al. 2004c, 2006b; Sanjuán and Elena 2006; de la Iglesia and Elena 2007). However, the importance of this work is not simply in the demonstration and impact of epistasis, but in how it is linked to mutational robustness. Robust genomes are protected against deleterious mutation through the creation of neutral spaces, genetic redundancies (such as duplicated genes), modularity, or through frequent complementation (Krakauer and Plotkin 2002; de Visser et al. 2003; Montville et al. 2005). Perhaps the key observation in this context is that antagonistic epistasis and robustness are inversely correlated: when antagonistic epistasis is commonplace, as appears to be true for RNA viruses, robustness is weak (Elena et al. 2006; Sanjuán and Elena 2006). In contrast, larger DNA-based organisms are characterized by synergistic epistasis and greater robustness (Fig. 3.14). In this sense there is also a strong correlation between epistasis and genomic complexity (Sanjuán and Elena 2006). The explanation for the dominance of antagonistic epistasis in RNA viruses is most likely that genome sizes are small, with many overlapping functions, and few mechanisms of robustness (for example, duplicated genes), such that mutations will repeatedly damage the same functions (Wilke and Adami 2001; Wilke et al. 2003; Sanjuán 2006). In addition, antagonistic epistasis in RNA viruses, and more particularly in viroids, may also be due in part to an abundance of secondary structures (Sanjuán et al. 2006b). In contrast, more complex DNA-based genomes have evolved buffering mechanisms
Fig. 3.14 Genetic robustness and epistasis. (a) Schematic representation of the differing properties of robust (redundant) and non-robust (non-redundant) genetic systems. In non-robust systems, such as RNA viruses, where there are few genes, single mutations have strong fitness effects and antagonistic epistasis, whereas in robust genetic systems with many genes, individual mutations have weak fitness effects and synergistic epistasis. Taken from Elena et al. (2006) with permission. (b) Evidence for generalities depicted in (a). A compilation of the sign of epistasis in a variety of organisms: long bars show significant evidence for epistasis; short bars show non-significant evidence for epistasis; flat bars show no evidence for epistasis. A. niger, Aspergillus niger; C. elegans, Caenorhabditis elegans; M. guttatus, Mimulus guttatus; S. cerevisiae, Saccharomyces cerevisiae; Taken from Sanjuán and Elena (2006) with permission.
that allow them to tolerate a certain number of deleterious mutations. When these mechanisms are exhausted by too many mutations such cryptic deleterious effects become visible, resulting in synergistic epistasis.

Although robustness is generally thought to be weak in RNA viruses, there are two other ways that it might be manifest, first through the action of cellular chaperones that increase protein stability (Elena et al. 2006), and which been shown to operate with dramatic effect in endosymbiotic bacteria that are also characterized by high mutational loads (Fares et al. 2002), and second in quasispecies models in which very high mutation rates push populations towards flat fitness landscapes (i.e. where more mutations are neutral; Wilke et al. 2001). The discussion of this latter model, often called ‘survival of flattest,’ lies at the heart of Chapter 4 on the RNA virus quasispecies. However, it is sufficient to say here that RNA viruses in nature are unlikely to regularly attain the very high mutation rates required to experience quasispecies dynamics. Rather, it is more likely that RNA viruses are engendered with a kind a ‘population robustness’ derived from their large population sizes (Elena et al. 2006). This ensures that a sufficient number of unmutated progeny are available for the next generation, facilitates the efficient removal of deleterious mutations, and will result in an increased frequency of compensatory mutations. As should be clear by now, a common theme in this book is that it is the large population sizes of RNA viruses that saves them from their deleterious mutation rates. Conversely, in large multicellular genomes, genetic redundancy through gene duplication provides a perfect route to genetic robustness.

Those comparative analyses undertaken to date also suggest an important role for antagonistic epistasis in RNA virus evolution. One simple manifestation of epistasis that can be detected in sequence analyses is the occurrence of co-varying nucleotide or amino acid changes, such that pairs (or more) of mutations co-occur across the branches of phylogenetic trees more frequently than expected by chance (Fig. 3.15). Although this test is highly conservative, it does give some indication of the frequency of one form of epistasis in nature. Such an analysis found that 55 of 177 RNA data sets showed significantly more co-varying changes than expected by chance alone and irrespective of viral type (ssRNA− or ssRNA+), and with a particularly strong effect at synonymous sites and in short sequence regions (generally less than 15 amino acid residues) (Shapiro et al. 2006) (Fig. 3.15).

3.5.2 The importance of RNA secondary structure

That epistatic effects are often localized suggests that they may be in part determined by RNA or protein secondary structure. Indeed, there is growing evidence for the importance of RNA secondary structure as a general cause of epistasis (Higgs 1998). Although RNA viruses are often viewed as a linear series of nucleotides, this is a gross simplification as they may form a complex set of RNA secondary structures. The functional importance of some of these structural elements means that they have been studied in great detail, such as the internal ribosome entry site (IRES), that enhances viral translation in a variety of viruses (Pelletier and Sonenberg 1988),
or the 3’ untranslated region (3’ UTR) of flaviviruses, which is fundamental to a number of aspects of the viral life cycle (Alvarez et al. 2005a), and perhaps virulence (Proutski et al. 1997; Leitmeyer et al. 1999). These structural interactions can also be very long range, sometimes causing viral genomes to circularize (Alvarez et al. 2005b). Importantly, functional RNA secondary structures are also present within the coding regions of viral genes (Thurner et al. 2004; Robertson et al. 2005; McMullan et al. 2007; Yang et al. 2008), and doubtless many more examples will be discovered. Whatever their cause, the observation of widespread RNA secondary structures again argues against the selective neutrality of synonymous sites (Simmonds and Smith 1999).

A more dramatic proposal is that genome-scale secondary structures are also commonplace in RNA viruses (Palmemberg and Sgro 1997; Simmonds et al. 2004; Thurner et al. 2004). For example, extensive work by Peter Simmonds (University

Fig. 3.15 Compensatory mutations as a measure of epistasis. (a) Detecting compensatory mutations using phylogenetic trees. Each circle represents a mutation. Those in tree A are compensatory because they co-occur on independent lineages, while those in tree B do not. (b) The spatial distribution of pairs of compensatory amino acid changes in 177 RNA genes (vertical bars). The mean (solid horizontal line) and 95% highest value obtained from simulation (shaded area) are shown. The bias toward compensatory mutations that are close in primary sequence is evident. Adapted from Shapiro et al. (2006) with permission.
of Edinburgh, UK) suggests that ssRNA+ viruses frequently contain ‘genome-scale ordered RNA structures’ and which are associated with the ability of these viruses to generate persistent infections, perhaps through the evasion of innate immunity (Simmonds et al. 2004). Although a fascinating proposal, it is important to note that large-scale elements of structure are notoriously difficult to determine, particularly through bioinformatic approaches. For example, most of the computational methods used to predict RNA secondary structure only consider energetic criteria, whereas the kinetics of RNA folding may be equally important.

3.5.3 Convergence and pleiotropy

Before finishing this section, it is important to briefly mention two other evolutionary phenomena which similarly reflect the evolutionary constraints that result from highly constrained genome sizes: convergence (and parallelism) and pleiotropy (Holmes 2003b). A variety of experimental studies have now revealed both convergent and parallel evolution to be particularly commonplace in both RNA viruses and small DNA viruses (Wichman et al. 1999; Cuevas et al. 2002; Novella and Ebendick-Corpus 2004; Novella et al. 2004b; Greene et al. 2005; Duffy et al. 2006; Remold et al. 2008). For example, Cuevas et al. (2002) found widespread parallel evolution in 21 independently replicating lines of VSV, while Remold et al. (2008) similarly showed that homogeneity in environment (cell type) led to frequent parallelism (Fig. 3.16). Notably, both studies also showed that synonymous mutations can

![Fig. 3.16](image-url) Frequent parallel evolution in an RNA virus (VSV). N, P, M, G, and L denote individual genes. Each diamond represents a mutation relative to the ancestral sequence in 12 independently evolved populations cultured on different cell types (HeLa cells or Madin–Darby canine kidney (MDCK) cells, or both (Alternating)). Filled and open diamonds represent different mutations at the same site. The single dash represents a deletion. Taken from Remold et al. (2008) with permission.
be selectively advantageous, casting another vote against their universal neutrality. That nearly all studies of convergence and parallelism have involved experimental, as opposed to comparative, analyses highlights the problems of obtaining a phylogeny that is both sufficiently well known that homology and homoplasy can be clearly distinguished (Holmes et al. 1992), and accounting for the occurrence of multiple substitutions. Finally, although less often studied in an evolutionary context, pleiotropy also appears to be common in RNA viruses (and small DNA viruses), particularly given the frequent use of overlapping reading frames, and more directly from the observation that single proteins often possess multiple functions (Pepin et al. 2006; Remold et al. 2008). For example, whereas influenza A virus possesses separate haemagglutinin and neuraminidase genes, a single NH gene performs both functions in paramyxoviruses. Further, important pleiotropic mutations have been described in VSV (Frey and Youngner 1984), influenza A virus (Kilbourne et al. 1998), rotavirus (Au et al. 1993), and HIV (Shin et al. 1994).

3.6 The importance of intra-host viral diversity

Despite the remarkable capacity for RNA viruses to rapidly generate genetic variation it is striking that the overwhelming majority of comparative studies of their evolution have utilized consensus sequences. Rather than isolating and sequencing individual viral genomes, and which is often referred to as ‘clonal’ sequence data (although it most certainly does not mean asexual!), most work has utilized sequences that represent something of an average of the entire viral population within a single patient. The exceptions to this consensus versus clone rule are HIV and HCV, both of which generate persistent infections in their hosts and where the importance of examining the full extent of genetic diversity within single hosts was realized very early on. In stark contrast, clonal studies of intra-host genetic diversity within those RNA viruses that cause transient, acute infections are notable for their absence.

In some cases, a reliance on consensus sequences for evolutionary studies seems justified. In particular, for broad-scale investigations in molecular epidemiology, where the goal is to reveal the origins or phylogeographic structure of a specific virus, the use of consensus sequences is both sensible and far cheaper than obtaining clonal data. Further, if all the genetic diversity observed within a single host was generated de novo in that host, then the use of consensus sequences is also phylogenetically appropriate. The difficulty, of course, comes with more detailed studies of evolutionary dynamics where the reliance on consensus sequencing does not provide sufficient resolution. In these cases it is important to explore what Bryan Grenfell has termed ‘beyond the consensus’ evolution.

Before describing the results of analyses of clonal diversity in RNA viruses it is important to make an extremely important caveat: that laboratory error, most notably involving faulty PCR or sequencing, and where polymerase accuracy is an extremely important consideration, is likely to have contributed to at least some of the apparent
sequence diversity recorded within hosts (Bracho et al. 1998). Annoyingly, the structure of genetic diversity expected under laboratory error—in which there is a roughly even distribution of mutations at nonsynonymous and synonymous sites—is also that expected under a legitimate process of random mutation prior to the imposition of natural selection. The burden of proof therefore lies with those who generate or analyse intra-host sequence data to show that their conclusions are robust to laboratory error. In particular, it is obviously important to use the highest-fidelity enzymes for PCR amplification.

To date, studies of natural intra-host genetic diversity in acute RNA viruses and involving a reasonable number of sequences are only available for a small number of viruses. However, even these allow a number of important generalities to be made. First, most studies in this area have found relatively abundant intra-host genetic diversity, testament to the rapidity of both mutation and replication in RNA viruses. For example, in the case of DENV, average levels of intra-host pairwise genetic diversity are usually between 0.1 and 1% (Wang et al. 2002; Holmes 2003a; Lin et al. 2004; Chao et al. 2005; Aaskov et al. 2006) (Table 3.1), whereas in the case of Banana mild mosaic virus, an unclassified member of the Flexiviridae (ssRNA+), equivalent values are generally less than 2% (Teycheney et al. 2005). However, rather lower levels of intra-host diversity have been documented in some other cases, such as the flavivirus GBV-B (McGarvey et al. 2008), while mean pairwise diversity in WNV was 0.016%, with ~20% of clones differing from the consensus (Jerzak et al. 2005). Second, and of more importance, the nature of the mutations that are observed within hosts is often very different to that observed at the population level, with a predominance of putative deleterious nonsynonymous mutations that are later purged by purifying selection (see section 3.4 for more details).

Admittedly, it is possible that DENV is unrepresentative because the difficulties of replicating in hosts as divergent as humans and mosquitoes mean that purifying selection is especially strong in this virus. However, as argued throughout this book, deleterious mutation appears to be pervasive in RNA viruses. Further, a notable result from the WNV studies is that levels of genetic diversity are greater in mosquito compared to vertebrate (bird) hosts, indicative of different selection pressures in these different host environments (Jerzak et al. 2005). A major focus for future studies of RNA virus evolution in nature should therefore be to measure the extent and structure of intra-host genetic variation in a far wider array of RNA viruses, covering a range of ecologies and genome structures. It is also the case that most studies of deleterious mutation load in RNA viruses are highly conservative in that they do not directly consider synonymous mutations, even though I have documented the mounting evidence that many synonymous changes are not neutral. Measuring the fitness of the silent changes that occur within hosts, perhaps initially by determining how they affect RNA secondary structure, therefore represents another important research goal for the future.

Finally, it is also evident that intra-host genetic diversity is not simply the product of de novo mutation, as another of the key insights provided by studies of clonal
Adamantane-resistant viruses (N-lineage)

Fig. 3.17 Phylogenetic evidence for mixed infection in human influenza A virus. Clones of the matrix (M) segment for isolate NZ094 (from New Zealand), shown in italics, fall into three groups, one of which (grey box) clusters with adamantane-resistant viruses that possess the S31N mutation (i.e. they are members of the N-lineage; see Fig. 3.7). The other viruses in this tree were also sampled from New Zealand. The tree is drawn to a scale of substitutions per site.

Data taken from Ghedin et al. submitted
genetic diversity is that the mixed infection of individual hosts may be commonplace. This is beautifully illustrated in the case of influenza A virus described in section 3.3, in which adamantane-resistant and -sensitive lineages co-circulate in individual patients (Fig. 3.17). As at least 3% of all (≈3000) viral isolates generated by the Influenza Genome Sequencing Project (Ghedin et al. 2005) have some evidence of the large-scale sequence polymorphism indicative of mixed infection (Ghedin et al. submitted), this process clearly occurs at relatively high frequency. Such a high level of mixed infection also provides the potential for both frequent reassortment and complementation.
4

The RNA virus quasispecies

Since its formulation in the 1970s, the notion that RNA viruses form complex population structures known as quasispecies has dominated discussions on the mechanisms of RNA virus evolution. At the time of writing over 1000 articles on the PubMed online database contain the word quasispecies in the title or abstract, and a whole volume has been written on quasispecies in virology (Domingo et al. 2001). Although there is no doubt that quasispecies theory is a valuable evolutionary model, has been instrumental in introducing evolutionary ideas into virology, and can shed new light on evolutionary dynamics when mutation rates are extremely high, in this chapter I will argue that it is still highly debatable whether it applies to RNA viruses in nature. However, this should not be seen as an all-out attack on the quasispecies concept. Indeed, it is clear that for all its rights and wrongs quasispecies theory has had the major positive effect of making both virologists and evolutionary biologists think more carefully about the consequences of rapid mutation, and has perhaps inspired a new form of antiviral therapy. Rather, my gripes are that (i) quasispecies theory is often misunderstood, and I will be honest and say that I have erred here at times myself, (ii) that it is often described in quasi-scientific, almost mystical terms, and (iii) that much of the evidence said to support the quasispecies over other evolutionary models does nothing of the kind. In essence, my problem is not with the quasispecies per se, which is a rigorous and important theory, but rather with the loose manner in which it has sometimes been applied to RNA virus evolution. I believe that a critical, yet constructive, discussion of the value of quasispecies theory to understanding the evolutionary biology of RNA viruses in nature is of great importance to the field.

4.1 What is a quasispecies?

The theory underlying the quasispecies was originally developed by Manfred Eigen as a mathematical model of the self-replicating macromolecules that likely characterized the early evolution of life on Earth (Eigen 1971), although the term itself was not coined until a few years later (Eigen and Schuster 1977). Although these early papers by Eigen and colleagues are seminal in many ways, it has been argued that their innovation from a population genetics perspective was as important extensions of mutation-selection balance models (Wilke 2005). The quasispecies concept was first applied to viral populations by Esteban Domingo in the late 1970s, following the observation of widespread genetic variation in the RNA bacteriophage Qβ.
The RNA virus quasispecies (Domingo et al. 1978), and who has since published an impressive number of papers on this subject. As increasing amounts of gene sequence data were generated from RNA viruses (see, for example, Domingo et al. 1985 and Steinhauer et al. 1989), so the term became increasingly synonymous for genetic variation, eventually dominating discussions of viral evolution. Such is the undeniable success of the quasispecies concept that it has now become the dominant model of RNA virus evolution.

My first task is to develop a more precise definition of the quasispecies as applied to RNA viruses. In keeping with the rest of this book I shall do this in biological rather than mathematical terms, although mathematically it has been defined simply as the ‘distribution of mutants that belongs to the maximum eigenvalue of the system’ (Eigen 1996). Readers interested in a more quantitative definition should consult the original formulation by Eigen and Schuster (1977), or more recent considerations by Martin Nowak and Bob May (Nowak and May 2000), Rafa Sanjuán (Sanjuán 2008), and Claus Wilke (Wilke 2005). Interested parties might also consider a number of the theoretical updates that have been made to quasispecies theory in recent years (for example, Wilke 2003).

In simple terms, the quasispecies is a particular form of mutation-selection balance in which a distribution of variant genomes is ordered around the fittest, or ‘master’, sequence. This distribution of mutants is sometimes referred to as a cloud or a swarm. However, rather than simply providing a description of genetic diversity, the key element in quasispecies theory is that the mutation rate in the system is so high that the frequency of any variant in the population is not only a function of its own replication rate—and hence individual fitness—but also the probability that it is produced by the erroneous replication of other variants in the population that are linked to it in sequence space (i.e. that differ from each other by only a small number of mutational changes). As a consequence of this ‘mutational coupling’ viral genomes are not independent entities, but rather form a distribution of evolutionarily interlinked genomes, so that the entire mutant distribution behaves as if it were a single unit (Eigen 1996) (Fig. 4.1). To rephrase this slightly, high mutation rates ensure that

![Fig. 4.1](image-url) The quasispecies. (a) A viral population without quasispecies structure in which natural selection favours variant A which, by mutation, produces variants B, C, and D at a low rate. (b) A quasispecies in which mutational coupling among variants (denoted by arrows in both directions) ensures that the viral population evolves as a single unit, although variant A still possesses the highest individual fitness (but is not at the highest frequency). The frequency of each variant in the population is reflected in the size of each circle.
4.1 What is a quasispecies?

the evolutionary dynamics of individual variants depend on the fitness of others in the population. Crucially, this particular population structure also means that even variants with a low individual fitness can reach a relatively high frequency in the quasispecies if they have mutational links to variants with higher fitness (Biebricher and Eigen 2005; Wilke 2005). Similarly, quasispecies dynamics mean that the most common genotype is not necessarily the fittest, and that the ‘wild-type’ may only comprise a small proportion of the total population.

In original models of quasispecies dynamics there was no room for the random diffusion of mutants through the population by genetic drift. As population sizes were assumed to be effectively infinite, the sequence space—the distribution of all possible mutants—was thought to be fully explored (Eigen 1971, 1996). An important consequence of this lack of genetic drift is that although the master sequence continually generates mutants, it maintains a stable frequency in the population. However, more recent manifestations of quasispecies theory have relaxed this limiting assumption so that it can apply in finite populations given particular parameter values (Wilke et al. 2005; see below).

By far the most important evolutionary consequence of quasispecies dynamics—indeed, their essence—is that the mutational linkage among genomes means that natural selection acts on the mutant distribution as a whole, rather than on individual variants as in the population genetic models normally applied to cellular organisms. As such, the quasispecies as a whole evolves to maximize its average fitness, rather than that of individual variants. This, in turn, leads to one of the most interesting, and controversial, implications of quasispecies theory: that under particular mutant distributions low-fitness (i.e. slow-replicating) variants can sometimes outcompete variants of higher fitness if they are surrounded by beneficial mutational neighbours. It is this effect that has been proposed to explain classic experimental observations in VSV that high-fitness mutants can be ‘suppressed’ by their low-fitness neighbours (de la Torre and Holland 1990).

As an example of this key aspect of quasispecies dynamics imagine two hypothetical viral populations; population A in which there is an individual variant of highest fitness, but which has low-fitness mutational neighbours, and population B, in which all mutants have a similar, average fitness that is higher than the average fitness of population A (i.e. population B is more robust) (Fig. 4.2). Under classic ‘survival of the fittest’ models of Darwinian evolution population A is superior to population B as it contains the individual variant of highest fitness. However, under quasispecies dynamics, population B can in some instances gain superiority: high mutation rates mean that the variant of highest fitness in population A is connected, by mutational coupling, to its low-fitness neighbours, reducing the average fitness of the population as a whole to potentially below that of population B. This effect has cleverly been referred to as the ‘survival of the flattest’ (Wilke et al. 2001), although it is perhaps more correctly thought of as increased mutational robustness. In fact, it is interesting to note that in recent years the debate over the existence of quasispecies in RNA viruses has turned into a debate over the extent of mutational robustness (Montville et al. 2005; Codoñer et al. 2006; Sanjuán et al. 2007; Belshaw et al. 2008).
It is easy to see the power of quasispecies theory, why it differs from the individual-based models more commonly used in population genetics, and its potential applicability to rapidly mutating RNA viruses. However, over the last decade there have been a number of major debates relating to the validity of quasispecies theory in virology, generating considerable controversy (Domingo 1992, 2002; Domingo and Holland 1997; Smith et al. 1997; Domingo et al. 1999; Holmes and Moya 2002; Novella 2003; Moya et al. 2004; Biebricher and Eigen 2005; Sanjuán 2008). Importantly, the main bone of contention is whether the quasispecies represents a viable model to describe the evolution of RNA viruses in nature, and not whether the quasispecies is a viable model, period, because this is clearly so. The validity

Fig. 4.2 The survival of the flatter. The figure depicts two populations—A and B—that are located in different regions of sequence space. The light-grey population (A) is characterized by a high replication rate but low mutational robustness. In contrast, the dark-grey population (B) has a lower replication rate but greater mutational robustness. Dots depict individuals located on each peak at low and high mutation rates. The expected distribution of individual fitness values for the two populations are shown on the right of the figure. At low mutation rates, population A, which possesses the variant of highest individual fitness, will always out-compete the flatter population B. However, the situation can be reversed at high mutation rates, in which case selection favours the population (B) with greater mutational robustness. Adapted from Sanjuán et al. (2007) with permission.

4.2 The great quasispecies debate

It is easy to see the power of quasispecies theory, why it differs from the individual-based models more commonly used in population genetics, and its potential applicability to rapidly mutating RNA viruses. However, over the last decade there have been a number of major debates relating to the validity of quasispecies theory in virology, generating considerable controversy (Domingo 1992, 2002; Domingo and Holland 1997; Smith et al. 1997; Domingo et al. 1999; Holmes and Moya 2002; Novella 2003; Moya et al. 2004; Biebricher and Eigen 2005; Sanjuán 2008). Importantly, the main bone of contention is whether the quasispecies represents a viable model to describe the evolution of RNA viruses in nature, and not whether the quasispecies is a viable model, period, because this is clearly so. The validity
4.2 The great quasispecies debate

of the quasispecies for RNA virology has been addressed using three types of data: (i) in silico experiments involving so-called digital organisms, (ii) classic experimentation in vitro, and (iii) comparative, sequence-based studies. As I will show below, the quasispecies debate spins on whether the mutation rates experienced by RNA viruses in nature are of sufficient magnitude to allow the onset of quasispecies dynamics through mutational coupling. However, before I turn my attention to this central talking point, it is important to consider a number of other aspects of the quasispecies debate.

4.2.1 What’s in a name: quasispecies or polymorphism?

The first source of contention regarding the viral quasispecies, and the easiest to resolve because it is largely semantic, concerns the use of the term as a valid way to describe genetic variation within viral populations. Remarkably, despite the frequency with which the word ‘quasispecies’ is used in virology, it is clear that most people use the term simply to describe the occurrence of intra-host (or intra-cell in culture systems) genetic variation in RNA viruses. This is an unquestionable misuse of the word, as the identification of genetic variation in no way fulfils all the defining criteria of a quasispecies (an error that was pointed out by Eigen himself some years ago; Eigen 1996). This being said, this mistake is now such a common occurrence that it will probably never be corrected. Indeed, the term quasispecies has become so synonymous with the observation of genetic variation that it has even been applied to bacterial populations (Kuipers et al. 2000), even though they can never experience the error rates required to establish mutational coupling. Confusingly, some early studies even applied the term to viral isolates sampled from different geographical localities (Dopazo et al. 1988). This is also an incorrect usage because the required mutational coupling among variants cannot occur unless a viral population is sampled from an individual infected host. In only a minority of cases have those investigators who have used the term quasispecies to describe a viral population considered its defining feature: that natural selection acts on the whole population. Similarly, much of the terminology associated with the use of quasispecies theory in everyday virology is divorced from the rigour of its underlying mathematical model. Words such as swarm and cloud are good examples: although these may generate useful images of genetic diversity, they are some distance from the evolutionary model that underlies quasispecies theory.

More importantly, given the rapid mutational dynamics that seem to characterize RNA viruses as a whole, intra-host genetic variation is an expected and predictable occurrence, even in the case of acute viral infections that only infect their hosts for a few days. In short, high levels of genetic variation—sequence polymorphism—do not equate to the existence of viral quasispecies. Ironically, a greater challenge to the orthodoxy of RNA virus evolution are cases where no genetic variation is observed within viral populations despite repeated sampling.
4.2.2 Is quasispecies theory different from ‘classical’ population genetics?

One of the most contentious, yet unnecessary, aspects of the quasispecies debate is that this theory is somehow qualitatively different from the models used in what might be regarded as the ‘classical’ population genetics edifice built by Fisher, Haldane, and Wright. For example, even Eigen himself states that ‘The new [quasispecies] formulation of the concept of selection and its application to molecular systems differ sharply from the original Darwinian approach and from its later reformulation in population genetics’ (Eigen 1992, p. 27; my emphasis). However, the truth of the matter, as neatly demonstrated by Claus Wilke (Wilke 2005), is that quasispecies theory can be framed within the mainstream of modern population genetics, although its intellectual history is rather different. In short, the quasispecies is no more than a form of mutation-selection balance that applies to genetic systems characterized by very high mutation rates. As natural selection acts on the population as a whole in the quasispecies, it can also be considered a form of group selection. Indeed, scenarios involving very high mutation rates represent one of the few cases in which group selection—usually an anathema to evolutionary biologists—is considered to be viable. More generally, there is no doubt that the mathematical theory underlying the quasispecies correctly describes the dynamical behaviour of genomes given the underlying assumptions of the model. Hence, there is nothing inherently alien or heretic about quasispecies theory. The only issue worthy of serious debate is whether it accurately describes populations of RNA viruses in nature.

4.2.3 Does genetic drift destroy the quasispecies?

As noted above, in original formulations of quasispecies theory the sequence space of possible mutations was thought to be fully occupied, thereby preventing genetic drift. It was this lack of random diffusion that enabled the mutational coupling essential for quasispecies formation. Indeed, computer simulations show that simple models of quasispecies structure break down in the face of widespread genetic drift (Jenkins et al. 2001a). However, the uncertainty over the role played by genetic drift in viral evolution notwithstanding (discussed in detail in section 3.3), more modern descriptions of the quasispecies allow its applicability to finite populations. In particular, if the product of the effective population size \((N_e)\) and mutation rate \((\mu)\) is significantly greater than 1 (i.e. \(N_e\mu >> 1\)), then a finite population effectively behaves as an infinite one (Bull et al. 2005; Wilke 2005). In addition, it is also possible, and perhaps more informative, to think of the quasispecies only with respect to mutations that directly impact on fitness, rather than to genome sequences as a whole. This is sometimes called the ‘phenotypic quasispecies’ (Schuster and Stadler 1999).

While the potential for genetic drift to disrupt mutational coupling is no longer a major argument against the validity of the RNA virus quasispecies, the impact of random sampling in small populations may in part explain why beneficial mutations
4.2 The great quasispecies debate

sometimes appear to be ‘suppressed’ in viral populations as claimed in early studies *in vitro* (de la Torre and Holland 1990). As the probability that a mutation reaches fixation is partially dependent on its initial frequency, most advantageous mutations will lost by genetic drift in small populations. Similarly, in large populations clonal interference will also give the impression that beneficial mutations are somehow suppressed.

4.2.4 The evidence from ‘digital organisms’

One interesting way to explore the importance of quasispecies dynamics is through the use of so-called digital organisms, in reality a sophisticated form of computer simulation involving self-replicating entities that compete for the resources provided by CPU cycles (Wilke and Adami 2002). The most important observation stemming from these studies *in silico* is that there are situations when genetic systems characterized by high mutation rates—which can be considered as analogous to RNA viruses—do indeed exhibit quasispecies dynamics (Wilke *et al.* 2001; Comas *et al.* 2005). While there is little doubt that these results, and their derived conclusions, are correct given the parameter values used, it is less clear that evolution *in silico* can be equated to viral evolution in nature. The main issue here is how often the high mutation rates required to drive systems into quasispecies dynamics occur in natural systems. In the Wilke *et al.* (2001) study the mutation rates required to achieve quasispecies dynamics were usually greater than 1 mut/genome/rep (range of 1.13–3.5 mut/genome/rep), while in that of Comas *et al.* (2005) mutation rates of more than 2 mut/genome/rep were necessary. At lower mutation rates evolution conformed to standard survival of the fittest models. As noted in section 3.1, these mutation rates *in silico* are usually greater than the mean mutation rates observed in natural RNA viruses (and far higher than those seen in retroviruses). As a consequence, if the mutation rates estimated in the studies *in silico* are accurate, then these computer experiments paradoxically represent a blow to quasispecies theory as applied to RNA viruses in nature: while the theory represents a powerful description of evolutionary dynamics at high mutation rates, these high mutation rates are unlikely to be a common occurrence in ‘real’ RNA viruses.

4.2.5 Experimental tests of quasispecies theory

The use of experimental virology to explore aspects of quasispecies dynamics has a long history following the pioneering work of Esteban Domingo in Madrid, Spain, and John Holland in San Diego, USA, and based on even earlier work using the phage Qβ (Mills *et al.* 1967). A full description of the results of these studies is sadly beyond the scope of this book, although interested readers should consult their major review article (Domingo and Holland 1997) or book (Domingo *et al.* 2001) on this subject. As a necessity, I will focus only on those results that are most pertinent to determining whether the quasispecies represents a viable model of RNA virus evolution.
Despite a long history of experimental study, the most important work on quasispecies dynamics has probably occurred in the last 10 years. Arguably, the first true demonstration of what might be considered quasispecies behaviour *in vitro*, and still one of the most important papers on the subject, was the observation by Christina Burch and Lin Chao that ‘evolvability’ in the RNA phage φ6 was critically dependent on its mutational spectrum; in this case the ‘accessibility of advantageous genotypes’ (Burch and Chao 2000). The same study also showed that a high-fit clone evolved to lower mean fitness because its mutational neighbours were of low fitness, exactly as expected under quasispecies theory. In short, although it did not demonstrate the key quasispecies effect—the survival of the flattest—this paper did show that, *in vitro*, fitness can be thought of as an average property of the viral population, concordant with the predictions of quasispecies theory.

This key result has been extended by more recent experimental analyses of mutational robustness, using VSV (Sanjuán *et al.* 2007) and viroids (Codoñer *et al.* 2006) as model systems. Importantly, both these studies recapitulated the major findings of the work *in silico* described above: that quasispecies dynamics do occur at high mutation rates, but to achieve these mutation rates the error frequencies in RNA viruses have to be elevated artificially, and perhaps to levels that are unsustainable in nature. For example, in the study of VSV undertaken by Sanjuán *et al.* (2007), the detailed characterization of both fitness distributions and genetic variability revealed that a viral population with a lower replication rate was able to outcompete one characterized by a higher replication rate in the presence of chemical mutagens, indicating that the former was more robust to mutation (Sanjuán *et al.* 2007) (Fig. 4.3). In comparison, the faster-replicating population was fitter in the absence of elevated mutational pressure and may therefore better reflect natural populations of RNA viruses. Essentially identical conclusions can be drawn from the experimental study using viroids (Codoñer *et al.* 2006). In this case, viroids were subjected to treatment with ultraviolet C light as a way of elevating their mutation rate. Under these conditions the system also favoured the more robust viroid, again compatible with quasispecies dynamics (Codoñer *et al.* 2006), whereas traditional survival of the fittest behaviour was observed at spontaneous (and hence ‘normal’) mutation rates. In these circumstances it is possible that complementation represents a more powerful buffer against the effects of deleterious mutation than robustness, particularly as high rates of co-infection are associated with weaker selection for robustness (Montville *et al.* 2005).

Experimental studies have also suggested that quasispecies dynamics are critical to viral pathogenesis (Vignuzzi *et al.* 2005). In this case a mutant of poliovirus (denoted G64S) that produced an RNA polymerase with 6-fold-higher fidelity than the wild type was unable to infect the full range of tissues that are associated with severe disease, most notably the brain. Such widespread tissue diffusion only occurred when a more diverse viral population was used (G64SeOs), as generated by chemical mutagenesis, suggesting that increased genetic diversity is somehow central to pathogenesis. However, while this paper clearly demonstrates that the fidelity
4.2 The great quasispecies debate

Population A = high replication rate, low robustness
Population B = low replication rate, high robustness

Fig. 4.3 Evidence for the quasispecies effect (survival of the fittest) in experimental populations of VSV. (a) Distribution of 1000 fitness values in experimental populations A (mean log fitness = 0.386, variance = 2.054) and B (mean log fitness = 0.498, variance = 0.225). (b) Results of competition experiments at various mutagen doses in which the log fitness of population B is shown relative to that of population A. Two chemical mutagens were used, 5-fluorouracil (5-FU; ○) and 5-azacytidine (5-AzC; •). Note that the more robust population B is fitter at higher mutagen doses. Taken from Sanjuán et al. (2007) with permission.

of viral polymerases can, to some extent, be altered by a small number of point mutations—which has even been touted as a means to designing better vaccines (Vignuzzi et al. 2008) —and that there was an association between genetic diversity and pathogenesis, whether this behaviour can be attributed to quasispecies dynamics is a rather different matter. Although the authors suggest that there is a ‘co-operation’ among mutants in the quasispecies, such that the low-fidelity mutant
was only able to infect the brain when the high-fidelity mutant was also present, in reality the quasispecies considers the joint effects of mutation and selective competition and says nothing about co-operation (and no mechanistic basis for this co-operation was provided). In addition, it is possible to explain this same behaviour under models that do not invoke quasispecies dynamics: once the pathogenic (i.e. neuro-tropic) strains of poliovirus have breached the physical barriers in the host and debilitated defences, initially non-pathogenic strains can more easily find their way towards the brain, effectively acting as opportunistic infections. Finally, because neuro-tropic strains of poliovirus result in dead-end infections and are not normally transmitted in the population, natural selection will be unable to favour this trait.

4.2.6 Comparative analyses of RNA virus quasispecies

Although studies both in silico and in vitro suggest that some elements of quasispecies theory are correct, if not the required error rates in nature, the same cannot be said of those comparative studies of quasispecies dynamics undertaken to date. There are a number of pieces of comparative data that argue against the existence of quasispecies in RNA viruses in nature, although none should be considered definitive. One early suggestion was that much of the genetic variation observed in RNA viruses was in fact due to PCR and/or sequencing error (Smith et al. 1997). Although it is clear that laboratory error has contributed to the genetic diversity seen in at least some viral populations, widespread genetic variation is such a common observation in RNA viruses that this does not represent a serious challenge to quasispecies theory.

For those RNA viruses where intra-host genetic variation has been studied under natural conditions, such as the results from DENV discussed in Chapter 3, the observed mutant spectrum does not obviously satisfy that predicted under quasispecies dynamics, although this cannot be regarded as a strong test of the model. In particular, rather than comprising a diverse set of inter-linked mutants, there is often a single dominant clone surrounded by off-shoot ‘singleton’ mutations as expected under conventional survival of the fittest dynamics (see, for example, Fig. 2 of Lin et al. 2004). Alternatively, intra-host DENV diversity sometimes appears as a more diverse set of clones, yet ones that do not usually form the inter-connected network (i.e. non-tree-like) structure that might be expected under quasispecies dynamics (Dopazo et al. 1993). For example, a diversity of phylogenetic structures are visible in the intra-host populations of DENV-1 studied by Aaskov et al. (2006), with networks apparent in only a minority of cases (Fig. 4.4).

Further comparative evidence against the quasispecies as applied to RNA viruses is that most, if not all, cases of positive selection documented in these systems to date involve the fitness advantage of individual mutants over others in the population, and not the propagation of low-fitness mutants surrounded by advantageous mutational neighbours. Take, for example, the case of HIV where the process of natural selection has been particularly well studied, involving the accumulation of mutations that
evade either cellular or humoral immunity, or which provide resistance to antiviral drugs. Despite intensive study there is no clear evidence of quasispecies dynamics in this system. If there is any unpredictability in evolutionary dynamics, this seems most likely due to small effective population sizes and the action of genetic drift (see section 7.2 for a detailed discussion of this subject). As a specific example, consider

Fig. 4.4 Parsimony splits networks of six intra-host populations of the E gene of DENV-1 (20 sequences from each host) inferred using the SplitsTree4 program (Huson and Bryant 2006). All network edges are drawn to scale. The sequence data—from individuals sampled in Myanmar—was taken from Aaskov et al. (2006). Similar, generally non-complex, networks were observed for the other nine intra-host populations described in Aaskov et al. (2006).
the evolution of resistance to the drug AZT, the first antiviral agent, an RT inhibitor, used to treat HIV in the days of monotherapy. In this case resistance involves a specific group of mutations that tend to evolve in a similar order and without the clear suppression of those of high fitness (Larder and Kemp 1989; Kellam et al. 1994). The same story can be told for a multitude of other RNA viruses. I would even go so far as to say that, at present, there is no definitive example from a natural RNA virus population where selection has been shown to act on the group rather than the individual. Although Wilke (2005) very reasonably argues that quasispecies dynamics are not expected in situations of strong positive selection, as is clearly the case with drug resistance, these also represent the best opportunities to see the process of adaptation in action. More broadly, if quasispecies dynamics can never be ‘seen’ to occur in viral populations, one must question their importance. This also highlights a generic criticism of quasispecies models in virology: by attempting to explain every observation in RNA virus evolution, the theory will fall into the realm of untestable hypotheses. Examining the evolutionary dynamics of mutants that experience more subtle differences in fitness should therefore be a major subject for future study, and not simply from the perspective of the viral quasispecies.

As a brief digression, it is interesting to note that HIV is often cited as an archetypal quasispecies, largely because individual infected hosts exhibit extremely high levels of genetic diversity (Yuste et al. 1999; Domingo 2002). However, as noted in section 3.1, the intrinsic error rates associated with the use of RT may be five times lower than those observed in RdRp-utilizing viruses, and so well below the rates needed for quasispecies formation; indeed, the per-replication error rate in HIV may even be lower than the high-fidelity mutant of poliovirus generated by Vignuzzi et al. (2005). Hence, it is the additional processes of strong natural selection and frequent recombination that produce the huge levels of genetic diversity seen in this virus. Paradoxically, then, if there is one virus that demonstrably does not form a quasispecies, it is HIV.

A related feature that is claimed to be characteristic of quasispecies dynamics is that rates of adaptive evolution are highest on the ‘periphery’ of the fitness landscape, as this is where potential fitness gains are greatest (Eigen 1992; Biebricher and Eigen 2005). A slightly different formulation of this concept has a long history in population genetics and was used to counter early arguments for the neutral theory of molecular evolution, which predicted that the highest rates of evolutionary change in proteins occur in the least functionally constrained regions (King and Jukes 1969). However, that those viruses subject to continuous immune selection are often characterized by ‘ladder-like’ phylogenetic trees, such as the epidemiological-scale evolution of the HA gene of human influenza A virus, or the intra-host evolution of the env gene of HIV-1, implies that it is usually the centre of the mutant distribution—the fittest type—that is also most likely to give rise to mutations that confer the greatest fitness gains (Grenfell et al. 2004). Again, though, understanding the true contribution of the periphery of the fitness landscape to viral evolution will require the analysis of mutants with more subtle differences in fitness than usually measured in comparative studies.
4.2.7 Recombination and the quasispecies

One of the most interesting aspects of quasispecies theory, and surely one of the most controversial had it been given major attention, is the idea that recombination is in some respects detrimental for RNA virus evolution because it means that any error threshold is encountered at lower mutation rates (Boerlijst et al. 1996; G.M. Jenkins and E.C. Holmes, unpublished results). This sits in marked contrast to other evolutionary models in which recombination is considered a beneficial trait that is favoured by natural selection (see section 3.2). The very different evolutionary behaviour in RNA viruses may be because the mutation rate in this case is so very high that recombination cannot effectively purge deleterious mutations, although the mechanistic basis to this theoretical result has not yet been fully explored (Bull et al. 2005).

If the role of recombination in quasispecies dynamics is as claimed, then it is theoretically possible (although currently unstudied) that natural selection has acted to reduce the rate of recombination in RNA viruses, in contrast to all other biological systems studied to date. In fact, it is interesting that in many cases rates of recombination in RNA viruses are rather low (section 3.2), which could, very tentatively, be argued as indirect support for the idea that they have been minimized by natural selection. Similarly, the highest rates of recombination are observed in retroviruses such as HIV which, intriguingly, also have lower rates of mutation than RNA viruses replicating with RdRp. Following the same train of thought, this could mean that more recombination is permitted in the case of retroviruses because of their lower mutation rates. Alternatively, and evidently more likely, the high rate of recombination in retroviruses may simply reflect the peculiarities of their biology. In short, the role of recombination in the RNA viruses quasispecies currently raises more questions than answers, although its implications are fascinating.

4.2.8 ‘Memory’ in viral quasispecies

Some discussions of the viral quasispecies seem to engender them, probably unwittingly, with properties that seem almost mystical. In most cases this is simply due to a rather ill-advised choice of terminology, as the concepts discussed are usually entirely reasonable. A high-profile case centres around the idea that quasispecies are able to maintain a ‘memory’ of their past evolutionary history, first demonstrated in populations of FMDV (Ruiz-Jarabo et al. 2000), but later applied to other viruses including HIV (Briones et al. 2003). Although it is natural that the use of the term ‘memory’ should set off a chorus of alarm bells for evolutionary biologists, and the authors do draw analogies to aspects of neurological memory, there is nothing heretical, or even controversial, in the science relating to viral memory. The concept is simply that the selective process acting on a viral population as it adapts to a particular environment has a profound affect on allele frequencies, altering the frequency of many mutations in the viral population, if not pushing them to fixation. In short, natural selection changes the whole mutant distribution, which is not the same as saying that it acts on the mutant distribution as a whole! Although
the frequencies of these mutations drop in non-permissive environments, forming minority subpopulations, they increase in frequency when the viral population is again allowed to colonize the environment where they are found to be beneficial (Ruiz-Jarabo *et al.* 2000, 2002, 2003b; Arias *et al.* 2004). More importantly, aside from an arguably poor lexicography, there is nothing in the research of this *evolutionary memory* that provides definitive evidence for the existence of RNA virus quasispecies. However, these experiments do make two invaluable points about the nature of viral evolution: that evolutionary history is important when discussing the adaptive process, so that there is a strong historical contingency, even for organisms that evolve as rapidly as RNA viruses, and that it is again crucial to look beyond the consensus sequence.

4.3 Error thresholds, extinction thresholds, and error catastrophes

One of the most important, yet potentially confusing, aspects of quasispecies theory is the relationship between error rate and viral extinction, and the various terms used to describe it. Not only is it important to be semantically correct, but a proper understanding of the relationship between mutation rate and population extinction will go a long way to explaining the workings of a major new form of drug treatment. As I will outline below, the development of antiviral therapies based on the counter-intuitive concept of ‘lethal mutagenesis’ is perhaps the greatest practical achievement of research on the RNA virus quasispecies and one which beautifully illustrates the importance of evolutionary biology in medicine (for which the originators deserve great credit). It is therefore immensely ironic that there is growing body of thought which suggests that the true explanation for the success of lethal mutagenesis does not residue with the quasispecies (Bull *et al.* 2005, 2007).

Central to this particular section are the correct definitions of three terms, following the lead of Bull *et al.* (2005) and shown schematically in Fig. 4.5. (i) The *error threshold* can be defined as the point at which populations experience a phase transition from individual-based evolutionary dynamics to a situation where the fittest genotype suffers so many deleterious mutations that it cannot sustain itself in the population and is therefore only regenerated by back mutation from other variants in the population. Hence, this marks the point when selection favours genotypes that have lower individual fitness but increased mutational robustness (Bull *et al.* 2005). Importantly, the ‘best conditions for evolution’ (Eigen 1992, p. 84) are considered to be in the region just below the error threshold, as this is where the greatest number of mutants are produced, facilitating adaptation yet without an excessive cost of deleterious mutations. Although a concept that is often cited, it is also important to note that a threshold *per se* will only arise given a specific fitness function (Wiehe 1997), and is dependent on the sign of epistasis (Sanjuán 2008). (ii) Breaching the error threshold then leads to an *error catastrophe*, again reflecting the loss of the fittest genotype through deleterious mutation, and which is often touted as the explanation for the
4.3 Error thresholds and extinction thresholds

- • Action of lethal mutagenesis. Finally (iii) there is the extinction threshold, at which point there is a complete loss of the viral population because deleterious mutations accumulate faster than they can be eliminated by natural selection, thereby leading to a deterministic fitness decline and, finally, to population extinction.

The importance of the first two of these terms is that, as fundamental aspects of quasispecies theory, they have been claimed to form the intellectual bedrock of lethal mutagenesis (Domingo et al. 2005). The idea (as claimed) behind this form of drug treatment is that viral populations can be driven into error catastrophe through the use of mutagens such as 5-fluorouracil and ribavirin, although often in combination with more standard antiviral inhibitors (Loeb et al. 1999; Crotty et al. 2000, 2001; Sierra et al. 2000; Pariente et al. 2001; Ruiz-Jarabo et al. 2003a; Anderson et al. 2004). This technique has been successful both in vitro and in vivo, and applied to such infectious agents as FMDV, HCV, HIV, and lymphocytic choriomeningitis virus (LCMV), although different viruses respond in rather different ways. Although determining which evolutionary theory correctly explains lethal mutagenesis has proven controversial (Summers and Litwin 1996; Bull et al. 2005, 2007; Zeldovich et al. 2007), there is no doubt that its effects can be remarkable. For example, the deployment of 5-fluorouracil in combination with antiviral inhibitors such as guanidine hydrochloride resulted in the systematic extinction of various clones of FMDV.

Fig. 4.5 Schematic representation of the error threshold, extinction threshold, and error catastrophe. This simplest possible example considers two genotypes: A1 with fitness W_1 and A2 with lower fitness W_2, and which is produced by mutation from genotype A1. The replacement rate is fitness (W) multiplied by the proportion of mutation-free progeny, where μ is the mutation rate. Under this model (a), the error threshold marks the point (mutation rate) beyond which the fittest genotype A1 disappears because it has a lower replacement rate than genotype A2 (hence the dashed line). The extinction threshold marks the point at which the entire population goes extinct because the replacement rate is less than 1.0. (b) Rather than being a dramatic transition, as implied in the term error catastrophe, there is in fact a gradual decline in the frequency of the A1 genotype (and which may not be linear). Taken from Bull et al. (2005) with permission.
although this effect was not seen with each drug individually (Pariente et al. 2001) (Fig. 4.6). As expected, viral populations subject to this particular form of antiviral therapy show an increase in the complexity of mutational diversity (Domingo et al. 2005). However, that mutational diversity is not necessarily a predictor of extinction (Grande-Pérez et al. 2002), such that extinction can occur without the generation of hypermutated genomes (Grande-Pérez et al. 2005), argues against the action of an error catastrophe (see below).

Although the results of lethal mutagenesis are extremely exciting, it is important to exercise some caution. In particular, it possible that the application of mutagens will impose a strong selective pressure for the evolution of resistance (Sanjuán et al. 2007), in the form of an increase in overall replication fidelity, the selective exclusion of the mutagen from the active site of the viral polymerase, or increased robustness, although this has been debated (Martin et al. 2008). In addition, and of more direct importance for this book, it is another matter to say that the results of lethal mutagenesis can be unequivocally explained by quasispecies theory, although this question is probably irrelevant for the potential use of these drugs. Indeed, a strong case can be made that rather than being due to error catastrophe, as predicted under quasispecies theory, lethal mutagenesis instead involves breaching the extinction threshold. To put it another way, whereas an error catastrophe involves ‘an evolutionary shift in genotype space’ that is independent of population size (Bull et al. 2007), extinction requires a drop in population numbers and so explicitly involves viral demography. Hence, crossing the extinction threshold means that the viral population size will

![Graph showing the results of an experiment in which the titre of a strain of FMDV (C-S8C1) is exposed to different drug regimens: DMEM, Dulbecco’s modified Eagle’s medium; FU, 5-fluorouracil; G, guanidine hydrochloride; FUG, 5-fluorouracil and guanidine hydrochloride. Note that the strongest effect on viral titre is seen when a mutagen (5-fluorouracil) is used in combination with a replication inhibitor (guanidine hydrochloride). pfu, plaque-forming units. Taken from Pariente et al. (2001) with permission.](image)

Fig. 4.6 The theory of lethal mutagenesis applied to RNA viruses. The graph shows the results of an experiment in which the titre of a strain of FMDV (C-S8C1) is exposed to different drug regimens: DMEM, Dulbecco’s modified Eagle’s medium; FU, 5-fluorouracil; G, guanidine hydrochloride; FUG, 5-fluorouracil and guanidine hydrochloride. Note that the strongest effect on viral titre is seen when a mutagen (5-fluorouracil) is used in combination with a replication inhibitor (guanidine hydrochloride). pfu, plaque-forming units. Taken from Pariente et al. (2001) with permission.
ultimately decline (although this process can be reversed), and that this will occur irrespective of the initial population size. The key parameters setting this threshold are the mutation rate and the viral yield per infection cycle. That lethal mutagenesis works best in combination with antiviral inhibitors—that must act to reduce viral yield—supports this view.

4.4 Concluding remarks

If its underlying assumptions are met, particularly that of an error rate high enough to ensure mutational coupling, then the dynamics specified in quasispecies theory are a predictable evolutionary outcome. It is even likely that these assumptions match the conditions of the primordial RNA world for which the theory was originally derived. In laboratory systems it is clearly possible to generate artificial conditions that match those required for quasispecies formation, largely through the administration of mutational agents. However, by definition these are artificial systems requiring elevated mutation rates and therefore may not be directly applicable to RNA viruses as they evolve in nature (and viral evolution today is not the same as that of the RNA world).

Reading between the lines of this chapter it is obvious that a large part of the uncertainty over the practical applicability of quasispecies theory arises from an imbalance toward in vitro studies of this particular aspect of viral evolution. To truly determine the practical value of quasispecies theory it is essential that more analysis be conducted on RNA virus evolution in nature, with its myriad of complex interactions. Indeed, I would strongly argue that too few acute RNA viruses have been studied in sufficient detail through clonal sequencing at specific times in infection to determine whether they form quasispecies. As argued in section 3.6, the analysis of intra-host diversity in natural systems should be a major element of future studies in viral evolution.

Although there is still considerable uncertainty as to whether quasispecies theory correctly describes the evolutionary behaviour of RNA viruses in nature, the importance and value of the theory as a means of introducing evolutionary ideas into virology cannot be denied. However, rather than accepting the theory blindly whenever genetic variation is encountered in an RNA virus, as is the current vogue, I contend that its most important prediction—that natural selection acts on groups of viral genomes—still needs to be verified for natural populations of RNA viruses. Claus Wilke has stated that, ‘…we currently have no evidence (theoretical or experimental) that contradicts the existence of quasispecies effects in finite populations of RNA viruses, but we also have no experimental evidence in favor of it’ (Wilke 2005). While I hope I have shown that there is more evidence against the viral quasispecies than Wilke might believe, this is a remarkable admission given how frequently RNA viruses are claimed to form quasispecies.
Comparative genomics and the macroevolution of RNA viruses

5.1 The evolution of genome architecture in RNA viruses

One of the most interesting and important, yet understudied aspects of RNA virus evolution are the processes responsible for the diverse array of genome architectures employed by these infectious agents. Nestled within this general topic are some of the most intriguing of all questions raised in this book. To give a few specific examples: what explains the range of genome sizes in RNA viruses? What forces led to the evolution of segmented genomes? Why are some RNA viruses positive-sense and others negative-sense? Although of immense importance, these questions have, with few exceptions (notably Reanney 1982), rarely been addressed. The aim of this chapter is to suggest answers, albeit tentative ones, to these and a variety of other questions relating to the comparative genomics of RNA viruses. Although my conclusions are unlikely to be definitive, they should at least provide hypotheses for future testing. In doing so this chapter will also emphasize the evolutionary consequences of possessing highly restricted genome sizes: the small-genome dynamics I mentioned at the outset of this book.

5.1.1 The evolution of genome size

One of the most obvious, and therein important, biological features of RNA viruses are their small genomes. This also represents a natural place to start on our quest to understand the evolution of viral genome architecture. As noted in Chapter 1, genome sizes in RNA viruses vary in size by a little over one order of magnitude, irrespective of what host they infect. The smallest infectious agent that may be considered a true RNA virus (rather than a viroid) is *Ophiostoma novo-ulmi* mitovirus 6-Ld, weighing in at only 2343 nt (all members of the *Narnaviridae*, including the mitoviruses, are very small). In fact, there are very few RNA viruses with genomes smaller than 4000 nt (Fig. 5.1). At the other end of the scale, the largest RNA viruses are the coronaviruses (and their relatives the roniviruses), which have genome sizes of approximately 30000 nt, with murine hepatitis virus the largest at 31526 nt. Across RNA viruses as a whole, the mean genome size is approximately 10000 nt. A far wider range of genome sizes are seen in DNA viruses, from a mere 1758 nt
5.1 Evolution of genome architecture

- (porcine circovirus; Circoviridae; ssDNA) up to 1,181,404 nt (Acanthamoeba polyphaga mimivirus, with the related ‘mamavirus’ perhaps even larger; La Scola et al. 2008). It is also highly significant that the genomes of all ssDNA viruses are small, with none larger than 11,000 nt (with the segmented nanovirus milk vetch dwarf virus the largest at 10,958 nt). This size restriction reinforces a central argument of this book: that ssDNA viruses are very RNA-like in their evolution. As a brief aside, a partial reason for the very large genome sizes of some dsDNA viruses is that they have captured host genes that allow them to modulate host immune responses (reviewed in Shackleton and Holmes 2004). Obviously, the major constraints imposed on genome size mean that this option is closed to RNA viruses.
(see section 5.2). Also of relevance is that the genomes of segmented RNA viruses are, on average, a little larger than those of unsegmented RNA viruses (mean values of ≈11 000 and 9000 nt, respectively, but excluding the Coronaviridae and Roniviridae), with the reoviruses, with genomes up to 29 000 nt and 12 segments, the largest. The highly informative exceptions of the Coronaviridae and Roniviridae, which are both long and unsegmented, are discussed in more detail below.

A variety of hypotheses can be put forward to explain why the genome sizes of RNA (and ssDNA) viruses are so small. One, seemingly reasonable, idea is that genome sizes are constrained by the maximum size of the genetic material that can be packaged within a single virion. Hence, viral genomes are small simply because they are unable to ‘fit in’ any more genetic material. Interestingly, segment number does not seem to vary extensively in nature for individual segmented viruses, suggesting that there must be major costs to packaging more than the required number of segments, although these costs do not necessarily relate to genome size. For example, in the case of influenza A virus which has been studied in detail, virions that possess more than the normal eight segments have only been observed very rarely and usually in vitro (Enami et al. 1991), and packaging may not be a random process (Duhaut and McCauley 1996). However, while the mechanics of packaging are only known in a few cases (Qiao et al. 1997), there are important reasons to doubt the packaging argument. In particular, dsDNA viruses, which must also be subject to these same packaging constraints, are able to attain far larger genome sizes than RNA viruses.

Although the constraints of packaging seem easy to dismiss, other structural features of RNA virus genomes may play a more important role in regulating genome sizes. In particular, an important topological constraint facing all RNA viruses is the requirement to unwind potentially long regions of dsRNA during replication (Reanney 1982). For those RNA viruses with longer genomes, this process is mediated by a distinct helicase (HEL) domain. The potential importance of this constraint is apparent in the idea that in ssRNA+ viruses there is a strong association between presence of a HEL domain and genome sizes of more than 6000 nt (Gorbalenya and Koonin 1989). It has therefore been suggested that the acquisition of a HEL domain represented a major transition in viral evolution, as it allowed genome sizes to increase beyond a previous threshold level and hence generate more phenotypic diversity (Gorbalenya et al. 2006). However, while the ability to unwind long RNA molecules clearly plays some role in setting genome size (and may explain why most dsRNA viruses are segmented; see below), it cannot explain why ssDNA viruses also possess small genomes. Similarly, that long RNA molecules are fragile and so liable to breakage may also constrain the length of ssRNA viruses, although this does explain the equally restricted genome sizes of dsRNA viruses.

It is also possible that the restricted genome sizes of RNA viruses are determined by a requirement to replicate quickly (see section 3.1). Hence, because RNA viruses are competing with both hosts and each other for cellular resources, the smaller the genome, the faster the virus will be able to replicate, conferring on it a selective advantage. However, while rapid replication offers clear benefits to RNA viruses, this theory is unable to explain the enormous range of genome sizes occupied by
dsDNA viruses, even though as obligate parasites they might be expected to be under considerable pressure to replicate rapidly. In addition, there is no clear relationship between replication rate and genome size in those RNA viruses studied to date.

The final, and I think most likely, explanation for the small genome sizes of RNA viruses is that the amount of genomic material is limited by the intrinsically error-prone process of replication. As noted elsewhere in this book (especially section 3.1), if there is a roughly constant rate of mutation per nucleotide, then the longer the genome the greater the number of mutations produced, most of which will be deleterious. The power of this explanation is that it derives directly from one of the most fundamental aspects of RNA virus biology: their highly error-prone replication. In contrast, the higher-fidelity dsDNA viruses with far lower mutation rates are able to achieve much larger genome sizes. Importantly, this theory can also be extended to ssDNA viruses, which are both small and have mutation rates—and more notably substitution rates—that are far higher than those seen in dsDNA viruses (Fig. 3.1). The remaining puzzle is that ssDNA viruses have rather lower mutation rates per nucleotide than RNA viruses, but not larger genomes. One possible explanation that merits further investigation is that mutation rates in ssDNA viruses are rather higher than measured in experimental assays, perhaps because of additional deamination mutation (Duffy and Holmes 2008).

5.1.2 The exceptions: coronaviruses and roniviruses

Biology being what it is, there are exceptions to the broad-scale generalizations made above. In the case of the evolution of genome sizes the exceptions, which I believe help prove the rule, are the coronaviruses and roniviruses, which together with the rather smaller arteriviruses make up the order Nidovirales. From an evolutionary perspective, the Coronaviridae and Roniviridae are remarkable because their unsegmented ssRNA+ genomes have sizes—roughly 26 000–32 000 nt—that exceed those observed in other RNA viruses, often substantially. They also encode a polypeptide close to 7000 amino acid residues in length, almost twice the maximum ORF size seen in any other viral family. In fact, the genomes of the coronaviruses and roniviruses are essentially twice the size of their relatives the arteriviruses (13 000–16 000 nt). How is such a size increase possible without a mutational meltdown?

The expanded genome size in the coronaviruses and roniviruses is principally due to the presence of a very large (>20 000 nt) replicase gene, and one which is composed of multiple functional domains (Gorbalenya et al. 2006) (Fig. 5.2). A number of these domains are very familiar, such as the RdRp and the HEL. Others, however, are unique. Most interesting from the perspective of this book is the ExoN domain, which encodes a 3’-to-5’ exoribonuclease. Remarkably, the ExoN domain exhibits distant similarities to host cellular proteins of the DEDD superfamily of exonucleases (Snijder et al. 2003; Minskaia et al. 2006) which, among other things, are involved in proofreading and repair. This hints that coronaviruses and roniviruses are able to reduce the error rate associated with the RdRp through some sort of repair function, possibly involving proofreading activity of the 3’-to-5’
comparative genomics and macroevolution

Exoribonuclease (Minskaia et al. 2006). This, in turn, will reduce mutational load and allow larger genome sizes. Indeed, such a dramatic increase in genome size is unprecedented in the recent history of RNA virus evolution, although it is important to note that arteriviruses also have genomes that are rather larger than normally seen in unsegmented RNA viruses. However, the consequences any putative repair function has on evolutionary rates are unclear. Whereas some analyses have documented rather lower substitution rates in coronaviruses compared to other RNA exoribonucleases (Minskaia et al. 2006). This, in turn, will reduce mutational load and allow larger genome sizes. Indeed, such a dramatic increase in genome size is unprecedented in the recent history of RNA virus evolution, although it is important to note that arteriviruses also have genomes that are rather larger than normally seen in unsegmented RNA viruses. However, the consequences any putative repair function has on evolutionary rates are unclear. Whereas some analyses have documented rather lower substitution rates in coronaviruses compared to other RNA

Fig. 5.2 The extremely large replicase genes of coronaviruses and roniviruses (>20,000 nt) in comparison to that of their relatives the arteriviruses (<12,000 nt) (not drawn to scale). All these viruses are classified in the order *Nidovirales*. Note the additional domains in the coronavirus and ronivirus replicases, particularly the ExoN domain. Other domains of note are the RdRp and the helicase (HEL). EAV, equine arteritis virus; EToV, equine torovirus; GAV, gill-associated virus; IBV, avian infectious bronchitis virus; MHV, mouse hepatitis virus; PRRSV, porcine respiratory and reproductive syndrome virus. More details of all the domains present are provided in the original publication. Taken from Gorbalenya et al. (2006) with permission.
viruses (Jenkins et al. 2002), as well as a reduced burden of deleterious mutation (Pybus et al. 2007), evolutionary rates in SARS-CoV are as high as those seen in more rapidly evolving RNA viruses (Hon et al. 2008), although this could be a function of positive selection associated with the emergence of SARS in humans.

As discussed in more detail below, the replication strategy of the Coronaviridae and Roniviridae is also unique among RNA viruses, and which again seems to be largely a function of possessing a very large genome. In particular, the extremely large replicase gene of these viruses consists of two large ORFs denoted 1a and 1b. A −1 ribosomal frameshift, mediated by a ‘slippery sequence’ and an RNA pseudoknot, is required to express the ORF1b polypeptide, which occurs just upstream of the ORF1a stop codon (Gorbalenya et al. 2006). In addition, although the RNA polymerase activity of the coronaviruses is due to non-structural protein 12 (nsp12) that contains the usual conserved RdRp domain (Fig. 5.2), a second RdRp is contained within the nsp8 protein, and which may have arisen from nsp12 by gene duplication (Imbert et al. 2006).

5.1.3 The evolution of genome organization: an overview

Although the genomes of RNA viruses are small and might appear to look rather similar to the unitiated, this apparent simplicity hides a truly remarkable amount of genomic complexity. In this section I will argue that to explain the evolution of these diverse genome organizations requires us to understand the evolution of mechanisms to control gene expression—considered here as the processes of transcription and translation—as I believe that the two are inextricably linked. Specifically, I will suggest that many of the most interesting aspects of genome organization in RNA viruses represent solutions to the fundamental problems of controlling gene expression in an environment of small-genome dynamics (see Jaspars 1974 for an early exposition of this idea).

Central to this task is my classification of the genome organizations and replication strategies in RNA viruses into six general categories. Although this undoubtedly hides a great deal of biological detail, and some viruses cannot be easily categorized in this manner, I believe that these categories do highlight fundamental biological differences among viruses that have a profound impact on their evolution. Our goal is therefore to understand why these different organizations exist. These six categories are: (i) ssRNA− unsegmented, (ii) ssRNA− segmented, (iii) ssRNA+ unsegmented, single polyprotein, (iv) ssRNA+ unsegmented, subgenomic RNAs, (v) ssRNA+ unsegmented, ribosomal frameshift, and (vi) ssRNA+ segmented (and usually multicomponent) (Fig. 5.3). Because dsRNA viruses are mechanistically similar to ssRNA− viruses in that transcription occurs before translation, and comprise both segmented (the majority) and unsegmented genomes, I will consider them with ssRNA− viruses. Similarly, the replication strategy of retroviruses is so obviously different (i.e. involving cellular integration of a DNA intermediate) it will not be dealt with here.

The simplest argument to explain such a diverse array of genome organizations, although not one that I subscribe to, is that each represents (or at least most represent)
an independent origin as an escaped cellular gene. If true, there may be no clear selective benefit to any particular organization, as each is the end-product of a different evolutionary history. However, as I laid out in Chapter 2, what little evidence there is tentatively supports a pre-cellular theory of RNA virus origins. In addition, it is easy to imagine how, for example, molecules with a negative-sense genome orientation could evolve from ssRNA+ viruses as the former are a natural outcome of replication by the latter (while dsRNA viruses could be derived from dsRNA replication intermediates). Similarly, these different genome organizations could simply represent ‘frozen accidents’: neutrally evolving traits that have little impact on viral fitness. While this is theoretically possible for those genome organization/replication
strategies that are very rare—such as those of the coronaviruses and roniviruses—the take-home message of RNA virus genome organization is that there is little in the way of randomness, which strongly argues against a major role for neutral evolutionary processes. This is an issue discussed in more detail in section 5.2.

5.1.4 The evolution of genome segmentation

Explaining why some RNA viruses have segmented genomes, while others do not, is the most discussed issue in the genome-scale evolution of RNA viruses, although even this has received relatively sparse attention from evolutionary biologists. On one hand it is easy to imagine how segmented viruses could arise when two (or more) viruses co-infect a single cell, particularly if subgenomic RNAs are produced routinely. For example, given their restricted distribution as ssRNA+ viruses of plants, it seems likely that multicomponent viruses were generated when individual segments from different ssRNA+ viruses, and contributing different functions, co-infected a single plant cell and evolved to function together through complementation. The catholic host tastes of many plant RNA viruses (Reanney 1982) as well as their often high MOI suggests that such mixed infections occur on a regular basis, as indeed they must for this form of genome organization to be successful. In this case the evolution of genome segmentation is therefore likely to have occurred concurrently with the development of a replication cycle involving multiple virus particles. However, the necessity for multiple infection must also put an upper limit on the number of particles present in a successful virus.

On the other hand, understanding the evolutionary reasons why such a segmented genome might be selectively favoured is an entirely different, and more difficult, question. The most commonly stated idea is that reassortment, an inherent property of viruses with segmented genomes, is a form of sexual reproduction and, as such, is favoured by natural selection in the same way that ‘true’ sexual reproduction is favoured and maintained in other organisms (Pressing and Reanney 1984; Chao 1988). For example, reassortment has been proposed as a way in which RNA viruses avoid the deleterious consequences of mutation accumulation (Chao 1990, 1994; see also Pressing and Reanney 1984 for a rather different formulation of this idea).

As I discussed the evolution of recombination and reassortment in RNA viruses in detail in section 3.2, I will only recap a few general points here. Specifically, while it is clear that RNA viruses undoubtedly fulfil some of the criteria necessary for natural selection to favour reassortment as a way of avoiding the accumulation of excessive numbers of deleterious mutations, available data suggest that this explanation is unlikely to be correct. Most importantly, the burden of deleterious mutation appears to be high regardless of genome structure or the propensity to recombine/reassort (Pybus et al. 2007), and there is no evidence for frequent synergistic epistasis in viral genomes. Similarly, there is no good evidence that reassortment increases the rate at which advantageous genetic configurations are generated.

What then explains the relatively frequent occurrence of genome segmentation in RNA viruses (as well as its rarity in DNA viruses)? One interesting idea is that
segmentation in multicomponent viruses is the result of intracellular selection for smaller RNAs, as these have an advantage in either replication or encapsidation; that is, they represent selfish RNAs (Nee 1987). However, as noted by Chao (1988), left to its own this theory predicts that progressively smaller RNAs are favoured, eventually resulting in defective interfering particles, when in fact segment sizes in these viruses are similar to those observed in segmented viruses that utilize a single virus particle. Similarly, this theory cannot readily explain why multicomponent viruses are nearly all restricted to plants.

Another possibility that I have already touched upon is that, by reducing mutational load to some extent, genome segmentation allows RNA viruses to acquire larger genomes than their unsegmented cousins, and larger genomes obviously mean more functional diversity. However, although the average genome size in families of segmented RNA viruses is a little larger than that of unsegmented RNA viruses, the difference is not significant, the overlap is considerable, and the largest RNA viruses are unsegmented (Fig. 5.1). In addition, arguments based on genome size cannot explain why the number of segments does not exceed 12 (although it may be that segmentation allows more efficient viral packaging; Froissart et al. 2004). As an interesting aside, the maximum ORF sizes in RNA viruses are rather less variable than both the maximum segment and genome sizes, with an upper limit of approximately 4000 amino acids. Notably, this 4000 amino acid maximum also applies to unsegmented viruses which encode multiple ORFs (or subgenomic RNAs), with the only exception again provided by the coronaviruses and roniviruses.

As mentioned at the start of this section, I propose that the most likely explanation for the evolution of genome segmentation in RNA viruses is that it offers greater control over gene expression. One challenge faced by all RNA viruses is that they need to exert both quantitative and temporal control over the levels of each protein they produce. In the case of ssRNA+ viruses this control over gene expression must usually occur at the level of translation (rather than transcription) as this is the first step in the virus life cycle (Fig. 1.3). An additional problem for ssRNA+ viruses is that the ribosomes of eukaryotes recognize the 5’ regions of mRNA molecules, so that internal start codons (i.e. AUG) are not utilized, IRES sequences are often located in 5’ UTRs, and mRNAs are usually monocistronic. Therefore, in the case of unsegmented ssRNA+ viruses, it is usually not possible to translate individual proteins downstream of the initial 5’ AUG codon. As a consequence, many ssRNA+ viruses are ‘forced’ to translate a single polyprotein that is then proteolytically cleaved into individual protein products. Although such a genome organization is undoubtedly streamlined, it (in theory) comes at the cost of producing essentially equimolar amounts of each protein, even though producing more copies of specific structural proteins may be beneficial. Any difference in protein abundance must then be achieved through differential cleavage of the original polyprotein.

The most obvious way to overcome such constraints on gene expression is to divide up the viral genome into what can be thought of as separate ‘transcriptional units’, in which transcription (and translation) can occur at different rates. It is just such a division that I believe explains many of the large-scale patterns of genome organization
5.1 Evolution of genome architecture

in RNA viruses. Because the problem of controlling gene expression is most severe for the unsegmented ssRNA+ viruses, it should come as no surprise that they employ at least three strategies to produce distinct transcriptional units: (i) the division of the viral genome into multiple segments, (ii) the use of subgenomic RNAs to transcribe downstream ORFs, which is a common feature of alpha-like and carmo-like viruses, and (iii) the use of a −1 ribosomal frameshift to produce multiple ORFs in the case of the coronaviruses and roniviruses (Fig. 5.3). It is also important to remember that these strategies are not mutually exclusive. For example, coronaviruses employ the ribosomal frameshift and encode multiple subgenomic RNAs.

The division of the viral genome into multiple segments naturally results in independent transcriptional units, in turn enhancing control over gene expression. It is this feature that I believe explains why genome segmentation is so commonly observed in RNA viruses as a whole. Indeed, although all higher-order phylogenetic trees of RNA viruses are riddled with uncertainty (see Chapter 2), it is likely that segmentation has evolved multiple times in ssRNA+ viruses as viruses with this form of genome organization do not form a single monophyletic group (Goldbach and de Haan 1994) (Fig. 2.6). This in turn suggests that there is a continual selection pressure for segmentation in these viruses. Finally, as bacteria are able to produce polycistronic RNAs, there would be less requirement for additional transcriptional units in bacteriophage. This may explain why all ssRNA+ bacteriophage are members of a single family, the Leviviridae. Similarly, it is striking that only a single family of bacteriophage possess segmented genomes—the dsRNA Cystoviridae—and it cannot be excluded that these were originally derived from eukaryotic viruses.

5.1.5 The evolution of genome orientation and dsRNA viruses

Other avenues for controlling gene expression are open to those viruses with ssRNA− genomes. In particular, because the first step in the life cycle of these viruses is transcription rather than translation, ssRNA− viruses are also able to control gene expression at the level of transcription. For example, in VSV transcription results in five different mRNAs, each of which can be thought of as a natural transcriptional unit (Fig. 5.3). Given such an inherent ability to control transcription, it might also be expected that ssRNA− viruses are subject to less selection pressure to evolve segmentation than ssRNA+ viruses. In support of this idea is tentative phylogenetic evidence that segmentation has only evolved once in the ssRNA− viruses, in contrast to its frequent generation in ssRNA+ viruses (Vieth et al. 2004). In addition, that the same template is used for transcription and translation in ssRNA+ viruses requires that both processes be perfectly timed. The evolution of negative-sense viral genomes constitutes a viable solution to this problem, as distinct forms of RNA template are used for transcription and translation in ssRNA− viruses. As a consequence, both processes can proceed concurrently without interfering with each other. It therefore seems likely that the ability to better control RNA transcription is the most likely explanation for why some RNA viruses evolved negative-sense genome orientations in the first instance.
However, ssRNA− viruses could still subject to an important constraint on gene expression that may have favoured the evolution of segmentation in this group of viruses: that the rate of primary transcription is heavily dependent on genomic position, so that the first (i.e. 3′) mRNA is produced more frequently than the last (5′) mRNA (Fig. 5.3). In the case of the Mononegavirales this means that more of the N protein (nucleocapsid) is produced than the L protein (RNA polymerase), presumably because the replicatory function of the RdRp means that fewer copies are required. Indeed, this ‘transcriptional gradient’ is the likely reason why the genes of the Mononegavirales are ordered as they are, reflecting the different amounts of protein product required. In support of this idea are experimental studies of VSV which show that changing gene order reduces fitness (Novella et al. 2004a).

The ability to undertake transcription before translation—and so better control gene expression—may also explain the existence of dsRNA viruses, although the difficulties in unwinding long stretches of dsRNA are likely have exerted an additional selection pressure for multiple, and hence shorter, segments in this group. Finally, enhanced gene expression may also offer a partial explanation for the highly unusual stop codon lineage of DENV-1, and which is most likely maintained by frequent complementation (Aaskov et al. 2006). In this case the proteins upstream of a stop codon in the E gene—the capsid (C) and membrane (M)—are intact and appear functional, whereas the downstream (nonstructural) proteins contain numerous deleterious mutations. This may therefore represent a case of incipient segmentation: the C and M proteins are on their way to become a different segment (or subgenomic RNA) of DENV, presumably because more of these protein products are required than those of nonstructural proteins. Indeed, the idea that complementation may be a critical step in the evolution of genome segmentation has also been derived from in vitro studies of RNA virus evolution (García-Arriaza et al. 2004).

5.1.6 The evolution of overlapping reading frames

One interesting facet of genome organization commonly used by RNA viruses is that of overlapping ORFs, sometimes called overprinting. At its most basic, this is surely an evolutionary strategy to increase the amount of protein diversity encoded by a single nucleotide sequence in a world of small genomes, again allowing more control over gene expression (although others have argued that it constitutes a more general strategy for the generation of evolutionary novelty; Keese and Gibbs 1992).

The use of overlapping ORFs is not quite a defining feature of RNA viruses. Belshaw et al. (2007) recorded 819 cases of gene overlap among 701 reference RNA virus genomes, with 56% of viruses showing some degree of overlap. Of these, nearly all (∼99%) involved a +1 (forward) or −1 (backward) frameshift. As a simple example, the OP (overlapping/movement protein) gene of tymoviruses (ssRNA+), such as turnip yellow mosaic virus, is entirely encoded within the same sequence utilized by the RP (replicase) gene, and covering approximately one-third of the latter’s sequence. There are also a variety of mechanisms that can lead to gene overlap, including ribosomal...
5.1 Evolution of genome architecture

Frameshifting, the use of non-AUG start codons, and RNA splicing (reviewed in Belshaw et al. 2007).

Aside from being a simple way to increase phenotypic diversity in limited genomic space, there are a number of other interesting evolutionary aspects to the use of overlapping ORFs. First, that synonymous mutations in one frame are likely to be nonsynonymous in another complicates some aspects of evolutionary analysis (Hein and Støvlbæk 1995), and can lead to the false-positive inference of positive selection using d_N/d_S (Holmes et al. 2006). Second, the use of overlapping ORFs can be thought of as an extreme form of pleiotropy, as every nucleotide site located within the overlapping region is expected to have a major impact on fitness. This, in turn, will be costly for the evolutionary flexibility of individual nucleotide sites. It is therefore no surprise that in viruses such as HBV, where overlapping ORFs are abundant (in this case representing approximately 50% of the viral genome; Fig. 5.4), lower rates of evolutionary change are observed in overlapping compared to non-overlapping regions (Zhou and Holmes 2007). Third, that HBV, as well as ssDNA viruses, show extensive gene overlap yet have rather lower per-nucleotide mutation rates than RdRp-replicating viruses suggests that gene overlap is not simply a function of possessing high deleterious rates (because it reduces the amount

![Fig. 5.4](image-url) The relationship between the natural logarithm of gene overlap (as a proportion of information content) and ‘information content’ in RNA viruses. Information content is defined as genome length plus overlap length. Each numbered point refers to a different virus, the details of which are given in the original publication. The extremes of the extents of gene overlap are represented by the retro-transcribing hepadnaviruses (such as HBV, point 23) and the Hypoviridae (dsRNA viruses of fungi, point 26). Taken from Belshaw et al. (2007) with permission.
of genomic material need to encode all necessary functions; Belshaw et al. 2007). Therefore, it is perhaps more likely that gene overlap is favoured simply as a way to increase functional diversity within the limits of already highly constrained genome sizes, but with the trade-off that rates of deleterious mutation are elevated. This may also explain the fascinating observation that RNA viruses with longer genomes tend to show less gene overlap than shorter RNA viruses (Belshaw et al. 2007) (Fig. 5.4), presumably because there is less urgency to create protein diversity in the former group.

5.2 The processes of genome evolution

As well as describing the different genomic architectures exhibited by RNA viruses, it is important to discuss, in general terms, the evolutionary processes by which they were generated. In its simplest form, this can also be set within the debate over the respective roles of natural selection versus genetic drift in molecular evolution. In particular, Mike Lynch (Indiana University) has argued in a series of elegant and provocative papers that large-scale features of genome organization in eukaryotes and prokaryotes, such as the numbers of duplicated genes, mobile elements, and introns, are the result of random (or, in his terminology, ‘nonadaptive’) processes, reflecting the inability of natural selection to shape patterns of genetic diversity when \(N_e s \) is low (Lynch and Conery 2000, 2003; Lynch 2007). Irrespective of whether these ideas are correct, they show that the ‘great obsession of population genetics’ applies equally to large-scale elements of genomic architecture as individual point mutations.

Although it may be dangerous to draw strong conclusions, the data presented so far provide little evidence that genetic drift has played a major role in shaping the genomic architecture of RNA viruses. Most fundamentally, RNA viruses, even those with the largest genomes, contain little in the way of non-functional inter-genic DNA, pseudogenes, or introns. Rather, the evolutionary strategy employed by RNA viruses is to utilize their inherently constrained genomes with as much efficiency as possible. For example, gene orders often seem to reflect function, such as the general tendency to group structural genes into one region of the viral genome and non-structural genes into another (Fig. 5.3), and which I think reflects natural selection for the control of gene expression. Indeed, given that many ssRNA+ viruses encode their genes in a single polyprotein it is difficult to imagine how genetic drift could greatly influence genome evolution in these circumstances.

Moving on from the debate over selection versus drift, there are four modes of evolutionary change that may explain the range of genome architectures seen in RNA viruses: (i) that they have been produced as the long-term result of simple divergent evolution, stemming from the accumulation of point mutations from a common ancestral genome that already possessed the ‘core’ genes required by RNA viruses (such as the RdRp and the capsid); (ii) that they have been produced by overprinting, resulting in the frequent use of overlapping ORFs; (iii) that they were produced by a series of gene (and even genome) duplications, much in the way that eukaryotes have
generated evolutionary novelty; or (iv) that they have experienced successive LGT events, involving genetic material from other RNA viruses or host genomes, and similar to the manner in which bacteria often generate genomic diversity (Ochman et al. 2000). Given that ‘simple divergent evolution’ is the default model of viral evolution, and overprinting is discussed in section 5.1, I will devote my attention here to the respective roles played by gene duplication and LGT.

5.2.1 Gene duplication in RNA virus evolution

Although the divergent nature of viral sequences makes the analysis of the processes of genomic evolution extremely difficult, particularly when considering viruses assigned to different families, gene duplication appears to be a relatively uncommon occurrence in RNA viruses. In fact, one of the most tangible differences between the genomes of RNA viruses and those of other organisms is a lack of multigene families, the most noticeable outcome of gene duplication. Although gene duplication must be responsible for some of the genome-size variation observed in RNA viruses, particularly during the early diversification of viral genes (as the original viral genomes were surely smaller than they are now), there are sound reasons why we should not expect frequent gene duplication in these organisms. In particular, given the ceiling on genome sizes imposed by high mutation rates, processes that increase evolutionary novelty through the expansion of genome size should be disfavoured compared to strategies that create novelty from existing genetic material. In general terms, this prediction seems to be true, as demonstrated by the relatively high frequency by which gene duplication is observed in large dsDNA viruses (Shackleton and Holmes 2004; Hughes and Friedman 2005) compared to its rarity in RNA viruses and ssDNA viruses (see below). In addition, those cases of gene duplication documented in RNA viruses all seem to involve the action of some form of either homologous or nonhomologous recombination. That these processes may occur only sporadically, if at all, in some RNA viruses further argues that gene duplication cannot be frequent.

Those gene duplication events documented to date in RNA viruses seem to fall into a small number of different types. The first category might be considered as short duplications that occur within the untranslated regions that flank viral genomes and which have been documented on a number of occasions (for example, Panavas et al. 2003; Gritsun and Gould 2006). A second general class of gene duplications are those that involve short intra-genic regions (Zlateva et al. 2007), and which often result in defective viruses (Nagai et al. 2003; Cao et al. 2008). A third, and final, class are those cases where gene duplication events have resulted in two complete ORFs within a viral genome (original and copy) and that are sometimes tandemly repeated. In some cases the sequences of the ORFs in question are highly divergent, because the gene duplication events occurred so long ago (Liljas et al. 2002; Imbert et al. 2006). For example, that the VP1, VP2, and VP3 proteins of picorna-like viruses share the same capsid structure suggests strongly that they are related (Rossmann et al. 1985), and may have arisen through gene duplication. Indeed, it is this form of gene duplication that may have characterized
the early evolution of RNA viruses. Although this process is extremely common in eukaryotes, it has been documented relatively infrequently in RNA viruses (Forss and Schaller 1982; Tristem et al. 1990; Boyko et al. 1992; Walker et al. 1992; Wang and Walker 1993; Karasev et al. 1995; LaPierre et al. 1999; Baroth et al. 2000; van Hulten et al. 2000; Peng et al. 2001; Valli et al. 2007).

5.2.2 LGT among viruses and hosts

As with gene duplication, the process of LGT has only been reported sporadically in RNA viruses, so much so that it cannot be regarded as a major evolutionary mechanism. Similarly, the occurrence of LGT is also dependent on recombination (or reassortment) which, as discussed in section 3.2, is a process that is largely dictated by genome structure. Perhaps the clearest case of LGT in RNA virus evolution concerns the haemagglutinin esterase (HE) gene of coronaviruses that was acquired from influenza C virus, and perhaps on multiple occasions (Luytjes et al. 1988). However, given that coronaviruses are extremely unusual in their capacity to increase genome size (see section 5.1), this is unlikely to serve as a general example. On a deeper timescale, the similarities among the protein domains of otherwise divergent viruses might also be argued as evidence for LGT (see section 5.2.3, on modular evolution), although the difficulties in resolving phylogenetic relationships at this level make it difficult to test the validity of this idea.

There have also been relatively few reports of LGT between RNA viruses and the genomes of cellular organisms. In these cases, viruses may act as either the donor or recipient. One of the most remarkable observations in viral evolution of recent years was that copies of virus genomes closely related to the flaviviruses Cell Fusing Agent virus and Kamiti River virus (ssRNA+) were found to be inserted into the (dsDNA) genomes of their Aedes mosquito vectors (Crochu et al. 2004). Not only does this represent a striking example of LGT, but it also requires a RT reaction, either involving a cell-derived version of RT, or through a co-infecting retrovirus. Similarly, a high level of sequence similarity has been observed between the env genes of Cer retro-elements of Caenorhabditis elegans and phleboviruses (Bunyaviridae), indicative of LGT from phleboviruses (Malik et al. 2000), while the integration of potato virus Y into several varieties of grapevine has also been proposed (Tanne and Sela 2005). As a final interesting example, when reticuloendotheliosis virus (REV) and Marek’s disease virus (MDV) co-infect an individual avian host, the former retrovirus can integrate into the genome of the latter dsDNA virus (Isfort et al. 1992).

In the other direction, RNA viruses have to shown to transiently incorporate host genome sequences. The temporary integration of cellular sequences, such as ubiquitin into the genomes of bovine viral diarrhoea virus (Flaviviridae), is particularly well documented (Meyers et al. 1989). The recombination between RNA viruses and host genome sequences has also been recorded in cell culture on a number of occasions (for example, Khatchikian et al. 1989; Charini et al. 1994), although not in natural populations of these viruses. More interesting is the observation of clear sequence similarities between the 65 kDa protein of closteroviruses (ssRNA+) and
the cellular heat-shock protein Hsp70 (Agranovsky et al. 1991). Similarly, the nucleoside triphosphate-binding motif (NTBM)-containing proteins of flaviviruses and potyviruses appear to share amino acid motifs with the NTBM proteins of prokaryotes and eukaryotes (Laín et al. 1989). As a final example, some isolates of Scottish potato leafroll virus (Potyviridae) possess sequence regions sharing strong similarity with a small exon of tobacco chloroplast DNA (Mayo and Jolly 1991). However, the reality is that there are few reports of the stable integration of cellular sequences into the genomes of RNA viruses, with the ExoN domain of coronaviruses one of the best documented (see section 5.1). This again suggests that there are major fitness costs associated with possessing overly long genomes.

5.2.3 **Modular evolution**

One theory of viral genome evolution that directly relates to the process of LGT, and which is of great historical importance, is that of ‘modular evolution’ (Botstein 1980) (Fig. 5.5). Although originally developed in the context of DNA bacteriophages, this theory can easily be extended to RNA viruses as a whole (an idea also suggested by

Fig. 5.5 Schematic representation of the theory of modular evolution for RNA viruses. Three hypothetical viral families—a, b, and c—each possess genomes comprising replicase (R), capsid (C), and envelope (E) modules. Under ‘standard’ divergent evolution (panel a), each module in each family evolves independently. In contrast, under modular evolution (panel b), there is LGT such that family b acquires its capsid module from family a, while family c acquires the envelope module from family b.
the original author). The basic concept underlying modular evolution is that viral genomes can be thought of as comprising a series of functional modules (capsid, envelope, polymerase, etc.) that can be exchanged through recombination/reassortment, thereby creating new types of virus. Suggested evidence for this process is that some plant viruses seem to be composed of proteins (for example, the polymerase and movement proteins) that have very different evolutionary origins, including those that may be closely related to the related proteins of animal RNA viruses (Gibbs 1987). To take a specific example, there is a proposed sequence similarity between the polymerase read-through domains of multicomponent plant viruses of the family Bromoviridae, unsegmented plant viruses of the genus Tobamovirus, and the unsegmented alphaviruses of animals, such as sindbis virus (Haseloff et al. 1984). Although these similarities are compelling, subsequent analyses indicated that these viruses can all be classified within the ‘alpha-like’ supergroup (Goldbach and de Haan 1994) (Fig. 2.6), in which case this evolutionary pattern may reflect common ancestry rather than cross-family LGT. Similarly, it has been proposed that the genomes of potyviruses are compromised of genes obtained from caulimoviruses, flaviviruses, picornaviruses, and tobamoviruses (Goldbach and de Haan 1994), although this remains to be formally tested. More recently, sequence and structural similarities between the IRES domains of unrelated flaviviruses, pestiviruses, and picornaviruses have been documented, again suggestive of cross-virus recombination events involving a key functional sequence (Hellen and de Breyne 2007).

Although an intriguing idea, there is currently little to support a major role for modular evolution in RNA viruses. Other than the examples described above, some of which are debatable, there are relatively few unequivocal demonstrations of either recombination/reassortment among divergent RNA viruses, or of functional modules that possess a phylogenetic pattern that does not match that of the virus genome from which they were derived. Further, many of the recombination events described in the genomes of RNA viruses do not involve intact genes (see Ohshima et al. 2007 for an instructive example), let alone functional modules. On the other hand, evidence for recombination reflecting some aspects of genome modularity has been observed in small DNA viruses (Martin et al. 2005; Lefeuvre et al. 2007; Zhou and Holmes 2007), indicating that this phenomenon should be investigated further. As discussed at length in Chapter 2, a major hindrance to resolving ancient evolutionary events in RNA viruses, implicit in the theory of modular evolution, is that distant relationships are extremely hard to determine among highly divergent amino acid sequences.

5.3 Patterns and processes of macroevolution in RNA viruses

The vast majority of studies in RNA virus evolution undertaken to date, including those covered in this book, may be regarded as exploring the realm of microevolution, focusing on either the processes by which genetic variation is generated in RNA
viruses, or on short-term phylogenetic patterns, manifest as molecular epidemiology. Far less attention has been devoted to exploring inter-specific evolution in RNA viruses, at least in part because of the inherent difficulties associated with analysing highly divergent gene sequences. However, if we are to fully understand RNA virus evolution it is essential that we consider the patterns and processes of change at all scales. That such studies may be informative is hinted at by cases such as the genus *Flavivirus* (ssRNA+), an important group of animal viruses and where there is a strong association between inter-species phylogeny and major aspects of viral phenotype, including associated disease syndrome, mammalian host, and vector species (Gaunt et al. 2001) (Fig. 5.6). Similarly, it is interesting to ask why some families of RNA virus, such as the *Potyviridae*, are particularly speciose, while others like the *Roniviridae* seemingly contain just a few taxa. For want of a better term, I will refer to this as the ‘macroevolution’ of RNA viruses.

5.3.1 Speciation in RNA viruses

Although various definitions of virus species exist (Gibbs 1987; Gibbs and Gibbs 2006a), placing divisions between these infectious agents is often an arbitrary exercise. While it may appear odd to consider the question of ‘speciation’ in organisms where it is unclear exactly what a species is, in reality my aim is simply to explore the processes that shape phylogenetic diversity in RNA viruses, particularly in trees that attempt to connect different viruses within a single family, or different viral families. To put it another way, why do the family (or higher) level phylogenetic trees of RNA viruses look like they do?

There are a variety of evolutionary processes that explain patterns of lineage differentiation in RNA viruses. In this context it is essential to think of viruses as organisms that infect different cell types, as well as different hosts. This realization allows an analysis of whether the speciation process in RNA viruses is dominated by jumping to novel hosts—as is manifest in the process of emergence (see Chapter 6)—or adapting to new cell types within an individual host species. To put it another way, despite its in vogue status, cross-species transmission and emergence is only one of the macroevolutionary processes exhibited by RNA viruses. Stretching the point a little further, it is also possible to fit, perhaps a little forcibly, the speciation patterns observed in RNA viruses into the classic division between allopatric and sympatric speciation commonly used in evolutionary biology. Hence, ‘allopatric’ speciation occurs when viruses jump to new host species, while ‘sympatric’ speciation reflects the adaptation to different cell types, or other aspects of the viral life cycle, within individual hosts (Fig. 5.7). Given this division, the key question then becomes whether allopatric or sympatric speciation is the dominant mode of speciation in RNA viruses.

Under a simple allopatric model viral lineages could separate, eventually forming distinct species, following a jump in host species that renders them ecologically distinct. In accordance with standard speciation theory this can also be regarded as an essentially neutral evolutionary process as there is no selective requirement to fix
Fig. 5.6 Inter-species phylogenetic tree of the genus Flavivirus based on the NS5 gene (which includes the RdRp). A variety of phenotypic characters are added to each cluster: host species, vector (where applicable), geographic location, and disease association. The major division by vector species is clear. Virus abbreviations are defined in the original publication (fig. 1, p. 1871). Taken from Gaunt et al. (2001) with permission.
5.3 Patterns and processes of macroevolution

•

The generation of independently replicating viral lineages—is simply a consequence of genetic divergence.

Alternatively, ‘sympatric’ models of viral speciation require the action of natural selection to reinforce their separation. In this case, the diverging viral lineages would remain pathogens of the same host but adapt to different ecological niches, or lifestyles, within that host. Such separation would be favoured if it reduced the extent of inter-pathogen competition (i.e. there is character displacement). For example, viruses undergoing sympatric speciation may infect different cells, tissues, or organs, infect different host age groups, peak in different seasons, or evolve unique routes of transmission. As the intra-host selective regime will be intensive, particularly given cross-protective immune responses, the sympatric speciation of viruses within individual hosts is likely to involve the acquisition of a limited number of critical mutations that immediate cause ‘speciation’. Under this model speciation is then the cause of lineage differentiation.

As constraints and trade-offs appear to be commonplace in viral evolution, it will often be easier for a virus to jump species boundaries and replicate in a familiar cell type than to change its lifestyle within the same host. Hence, cross-species transmission and emergence should not be considered unusual traits. This is satisfyingly counter-intuitive. For closely related hosts where cellular and immunological landscapes are likely to be similar, such as different species of primate, allopatric speciation may therefore simply require sufficiently frequent contact to allow viruses to jump among them, with few adaptive mutations (Brault et al. 2002; see section 6.3 for

Fig. 5.7 Models of ‘speciation’ in RNA viruses. (a) ‘Allopatric’ speciation in which viruses jump species boundaries and establish themselves in new hosts (i.e. cross-species transmission). (b) ‘Sympatric’ speciation in which viruses adapt to different cell types within an individual host, perhaps by utilizing different cellular receptors. That allopatric may occur more frequently than sympatric speciation is signified by the thicker arrow.
an extensive discussion of this subject). If this process is able to occur frequently, it may explain why some viral families, such as the Picornaviridae, are more speciose than others. On the other hand, changing cellular or tissue tropism, as may occur in sympatric speciation, is likely to require fundamental changes in viral biology. For example, the structure of the capsid and/or envelope protein may need to change to complement a different array of cell receptors, while a change in transmission route may require additional changes in the virion’s response to differences in optimal temperature and humidity. Although there are currently few data by which to test these theories, a previous analysis of the paramyxoviruses revealed that tissue tropism changed less frequently than host species (Taber and Pease 1990), exactly as expected if sympatric is more difficult than allopatric speciation. Similarly, the case of the flaviviruses discussed at the outset of this section highlights the relative evolutionary stability of some phenotypic traits.

5.3.2 A birth-death model of viral evolution

The macroevolutionary process in RNA viruses is reflected in the branching structure of phylogenetic trees that attempt to link viruses assigned to different families. These phylogenies possess a striking topological pattern: (relatively) short clusters of intra-family branches that are linked by very long inter-family branches of perhaps indeterminate length (see Fig. 5.8 for a schematic representation and Zanotto et al. 1996a for a real data presentation). To describe this pattern in another way, there is a marked lack of viral lineages that fall ‘mid-way’ between the tips and the root of the tree. The aim of this section is to explain, if only generally, what evolutionary processes might have given rise to this phylogenetic pattern.

It is clear that extensive multiple substitution, which will lead to a huge underestimation of phylogenetic distances at the inter-family level, is in part responsible for such a distinctive tree structure. However, this saturation effect will largely act to artificially reduce the length of the already long inter-family branches. In addition, I will shortly show that the loss of ‘intermediate’ lineages also occurs in far more closely related sequences, so that multiple substitution is only part of the story. Similarly, the huge under-sampling that plagues studies of viral evolution should affect all parts of the tree, and not just those lineages that fall between distinct families.

I therefore propose that the macroevolutionary phylogenetic pattern observed in RNA viruses—short family-level clusters joined by very long inter-family branches—depicts a true evolutionary phenomenon, albeit one that is massaged by frequent multiple substitution. I also propose that this phylogenetic pattern reflects the continual birth and death of viral lineages, and how we sample both extant and extinct members of these lineages. Specifically, under a simple birth-death model viral lineages are born under the processes of allopatric or sympatric speciation described above, and die when they fail to infect a sufficient number of hosts such that the basic reproductive number, R, is less than unity. The macroevolution of RNA viruses is therefore one marked by a continual lineage turnover. Critically,
under a constant rate of lineage birth and death, and sampling only extant lineages, we would expect trees to be relatively ‘tip-heavy’—resembling those of RNA viruses inferred at the inter-family level—as lineages that arose in distant past are more likely to have gone extinct than those that arose more recently (Nee et al. 1994b) (Fig. 5.9). In contrast, if we were able to include extinct lineages in such a phylogeny then a more even distribution of branches across the tree would be observed. In short, rather than representing an anomaly, the distinctive inter-family phylogenetic trees of RNA viruses can be thought of as the expected outcome of a simple birth-death evolutionary process, particularly if there is little recombination among lineages. Such models also predict that we are massively under-sampling viral biodiversity (Pybus et al. 2002).

Evidence for the applicability of such a model comes from those RNA viruses where sequences have been sampled over sufficiently long time periods to witness lineage birth and death in action. Take DENV, where the birth-death process is well documented (see section 7.3). In this case viruses have been isolated over a roughly 60-year period, spanning the 1940s to the present day, with DENV-2 (sampled between 1944 and 2004) a typical example. A phylogenetic tree of these DENV-2 sequences has a number of ‘intermediate’ lineages from root to tip, usually those

![Fig. 5.8 Schematic representation of the distinctive ‘macroevolutionary’ phylogenetic trees of RNA viruses, characterized by relatively short intra-family branches and very long inter-family branches, whose true length is extremely hard to assess because of frequent multiple substitution. Extreme levels of inter-family divergence also make it impossible to infer the origins of viruses based on sequence data alone, hence the ? symbol at the root. The branch lengths shown here are for stylistic purposes only and should not be regarded as drawn to any scale.](image-url)
that were sampled some decades ago, so that they can be considered extinct (grey lineages, Fig. 5.10a). However, although such temporally expansive trees are drawn routinely in studies of viral evolution, they paint a misleading picture of evolutionary dynamics as many of the lineages included are extinct (hence matching tree c in Fig. 5.9). As 60 years of DENV evolution is equivalent to roughly 60 million years of mammalian evolution, this is rather like reconstructing a tree of mammals to estimate current biodiversity but including a selection of fossil forms. Indeed, if the same DENV-2 tree is drawn only including those (extant) sequences sampled from the year 1984 to the present day, intermediate lineages are preferentially lost because they have suffered extinction (Fig. 5.10b; and see the resemblance to tree d in Fig. 5.9). I propose that this same effect is played out across RNA viruses as a whole, but that it is rarely observed because the norm is for extinct viral lineages to be included in phylogenies as if they were extant.

A hugely important side effect of this birth-death model is that estimates of viral divergence time based on contemporary lineages may have little bearing on the true
age of the virus in question, but instead correspond to the date of the last lineage turnover event. To make a similar point in a different way, molecular clocks only provide information on the age of the virus in the sample analysed (i.e. when the lineages sampled last shared a common ancestor), and not necessarily on the absolute age of that virus. For example, that molecular clocks suggest that the available lineages of measles virus share an ancestor within the last 200 years does not mean that this virus is only 200 years old, but rather that we have not sampled older, extinct lineages (Pomeroy et al. 2008). In fact, it is likely that measles began spreading endemically at the time of the first cities (see section 6.4). Similarly, the correct interpretation of molecular clock studies that place age of the genus Flavivirus in the last 10000 years or so (Zanotto et al. 1996b) is simply that these particular species of flavivirus arose within this time period. The ultimate ancestry of the flaviviruses is likely to be far older—and perhaps measured on timescales of millions of years—but a process of continual lineage birth and death has resulted in a much shallower phylogenetic distribution of extant lineages. In section 7.2 I will suggest that this same birth-death
model can be used to explain the anomalously shallow common ancestry of the primate lentiviruses.

5.3.3 The birth and death of endogenous retroviruses

Although I believe that the simple lineage birth-death model outlined above offers a meaningful explanation for the macroevolutionary patterns observed in exogenous RNA viruses, perhaps the best evidence for its occurrence are the endogenous retroviruses (ERVs): the (usually) defective copies of retrovirus genomes that have integrated into the germline of eukaryotes and since been inherited in a vertical manner. The importance of ERVs is that they effectively constitute a ‘fossil record’ of past viral infections that cannot be inferred from an analysis of contemporary phylogenetic trees alone. Specifically, once ERVs become integrated into host genomes they cease to evolve like retroviruses and instead assume the evolutionary dynamics of their hosts: they no longer replicate using the highly error-prone RT, but instead employ the far higher-fidelity host DNA polymerases. Hence, ERVs can be thought of experiencing something of a ‘phase transition’ in their evolutionary dynamics. It is this property that allows inference of their age: if the mutational differences between ERVs are known to occur post-integration, such as those observed between the LTRs of a single ERV, or between duplicated ERVs, then divergence times can be estimated using host substitution rates. As an important case in point, while phylogenetic analysis suggests that the current diversity of primate lentiviruses was generated in the past few thousand years at most (see section 7.2), the discovery and dating of endogenous lentiviruses using host substitution rates places the ancestry of this family as a whole back several million years (Katzourakis et al. 2007; Gifford et al. 2008). This, in turn, suggests that we have only sampled the modern representatives of a continual birth-and-death process. Although I propose that similar processes apply to RNA viruses as a whole, ERVs provide the smoking gun. In one case—that of koala retrovirus (KoRV)—it has even been possible to observe the process of endogenization in action. KoRV most likely appeared recently in koalas following cross-species transmission in a zoo setting from gibbons that carried a closely related retrovirus (gibbon ape leukaemia virus; GALV) (Hanger et al. 2000). Yet KoRV is also an endogenous retrovirus, transmitting vertically in the koala population, although it is still to reach some isolated koala populations in southern Australia (Tarlinton et al. 2006) (Fig. 5.11).

ERVs are also remarkable in their abundance. For example, approximately 5–8% of the human genome is composed of human endogenous retroviruses (HERVs), comprising at least 31 distinct families present in around 100,000 copies (Katzourakis and Tristem 2005). Although some HERV families contain intact genome sequences suggesting that they are still active, and most notably members of the HERV-K superfamily (in particular HERV-K(HML2)), these are relatively rare. It has also been proposed that ERVs are able to block the replication of related exogenous retroviruses (Arnaud et al. 2007), although this is an issue that clearly needs to be explored further.
The 31 families of HERVs have been further classified into three major groups based on their similarity to the seven genera of exogenous retroviruses (a classification scheme that applies to ERVs generally): class I HERVs are similar to gammaretroviruses and epsilonretroviruses, class II to lentiviruses, alpha-, beta-, and deltaretroviruses, and class III to spumaretroviruses (although distantly) (Gifford et al. 2005; Katzourakis and Tristem 2005). Dating the appearance of these families again provides an important insight into evolutionary dynamics. Of particular note is that the exogenous ancestors of some HERVs may have existed long ago in primate evolution (Katzourakis and Tristem 2005). For example, Katzourakis and Tristem (2005) suggest that the prototype HERV-A element existed between 57 and 92 million years ago, the ancestral HERV-K at between 51 and 83 million years ago, and the prototype HERV-L at between 62 and 100 million years ago. Indeed, most ERVs are not closely related to exogenous retroviruses.

The abundance and distribution of ERVs in a wide range of taxa indicates how frequently animal populations have been subject to retroviral infections. However, infection and integration of an exogenous (i.e., infectious) retrovirus is not the only mechanism that generates ERVs, as they can also arise following retrotransposition from an existing endogenous copy. Importantly, birth-death models of their
intra-genic proliferation have been developed (Katzourakis et al. 2005), and are mechanistically similar to that which I outlined earlier in this chapter. In some cases the process of lineage birth also appears to be episodic. For example, there may have been a significant and independent expansion of the retroviral content of chimpanzee and gorilla genomes some 3–4 million years ago (Yohn et al. 2005), although the precise reasons why are unclear.
The molecular epidemiology, phylogeography, and emergence of RNA viruses

In some respects, this is a chapter about viral ‘life history’. It is certainly the most ecological of any chapter is this book, although doubtless many ecologists would object to my classifying it so. My aim is to document the epidemiological patterns, both temporal and spatial, exhibited by RNA viruses in nature, and to explore aspects of their emergence. In keeping with the overall theme of this book, the phylogenetic analysis of viral gene sequences will be the main analytical tool, often set within an approach that has been termed phylodynamics (Grenfell et al. 2004). Given that human viruses have been the most actively studied in this respect, I will necessarily focus on their evolution. However, the generalities drawn from this chapter should be applicable to a broad range of RNA viruses.

It is arguable that the most common form of evolutionary study performed on RNA viruses is molecular epidemiology, in which phylogenetic methodology is used to infer the origins, emergence, spread, and dynamics of viral epidemics. Such studies can be broad-scale, examining the global distribution of viral genetic variation, or highly localized, in which the precise network of transmission is reconstructed. Those studies which explicitly consider the process of emergence have attracted most attention. The success of this endeavour is due in part to the rapid rate of evolutionary change in RNA viruses, such that the epidemiological processes that shape their genetic diversity act on approximately the same timescale as mutations are fixed in viral populations (Holmes 2004). Indeed, the rapidity of RNA virus evolution is such that phylogenetic relationships can often be resolved among isolates that have been sampled only a few days apart (Yeh et al. 2004; Cottam et al. 2006, 2008), so that the analysis is sometimes hardly ‘retrospective’ at all. More tentatively, by revealing the ‘rules’ of viral evolution it might also be possible to make some general statements about what sorts of infections, from what reservoir species, and in what locations, will emerge in human populations in the future (Kilpatrick et al. 2006; Jones et al. 2008).

6.1 Phylodynamics: linking viral evolution at the phylogenetic and epidemiological scales

A key theme of this chapter is that there is a direct link between the population dynamics of RNA virus diseases, manifest as changes in prevalence and/or incidence
through time, and their molecular evolution. Although it is easy to make this link in abstract terms—RNA viruses evolve as they infect hosts—it is a very different matter to make a formal, more quantitative, connection between these two scales of analysis (Fig. 6.1). However, this synthesis is the central goal of the emerging discipline of phylodynamics (Grenfell et al. 2004).

The basis of the phylodynamic approach is that epidemiological processes, namely rates of population growth and decline, the extent of population subdivision, and patterns of viral migration, are written into gene sequences and can be recovered using a suite of phylogenetic techniques, with the coalescent approach paramount among them (Grenfell et al. 2004). As well as considering explicitly epidemiological processes, the phylodynamic approach can also be employed to study aspects of intra-host

![Measles time series](image-a.png)

![HIV time series](image-b.png)

![Measles virus population phylogeny](image-c.png)

![HIV population phylogeny](image-d.png)

Fig. 6.1 The phylodynamics approach. The link between the epidemiological and phylogenetic scales are shown for measles virus (a and b), which exhibits rapid (recurrent) epidemiological dynamics, and HIV-1 (c and d), which exhibits slow epidemiological dynamics. The measles time series represents weekly case reports from Leeds, UK, whereas the HIV-1 time series depicts annual diagnosed cases in the UK. The measles virus phylogeny is that of the N gene (63 sequences, 1575 nt), whereas 39 subtype B sequences (2979 nt) were used in the HIV-1 tree. Adapted from Grenfell et al. (2004) with permission.
viral evolution (at least in the case of chronic RNA virus infections), simply by thinking in terms of infected cells, rather than infected hosts.

The coalescent is crucial to phylodynamics because it represents a direct link between the phylogeny (or genealogy) of gene sequences sampled from a viral population, and the demographic history of that population (see Rambaut et al. 2008 for an important illustration concerning influenza A virus). Given sufficiently large data sets sampled with adequate temporal resolution, the coalescent will even allow the estimation of key epidemiological parameters, the most important of which is R. Although the coalescent may never replace simple case counts or serological surveys as a way of estimating the incidence and prevalence of an infectious disease, it crucially allows epidemiological dynamics to be inferred on a lineage- (or strain-) specific basis. Indeed, it is the ability to focus on genetically defined viral types that represents the true power of the coalescent: techniques such as serological assays only allow identification of major viral types—such as the four serotypes of DENV—rather than the multitude of lineages contained within each of these serotypes, and which may have very different epidemiological dynamics.

Important early work in this area was undertaken by Paul Harvey and Sean Nee at Oxford (Nee et al. 1992; Harvey et al. 1994a, 1994b; Nee et al. 1994a, 1994b, 1995). The major insight from these studies was that aspects of population history, notably rates of lineage birth and death (the latter of which also informs on the rate of extinction), can be revealed through the analysis of the branching structure of phylogenetic trees. The main analytical tool developed during this period was the ‘lineage-through-time’ plot, which depicted changing temporal patterns of observed (and expected) lineage birth and death (Fig. 6.2). Although this technique could in principle be applied to any phylogenetic pattern, it became clear that very different interpretations of the results were required if the phylogeny in question was likely to represent a nearly complete sample of available taxa, such as when studying macroecological patterns in vertebrates, or a very small sample, as is undoubtedly the case when dealing with viral populations (Nee et al. 1995). It is this reliance on small samples that links the analysis of lineages-through-time with the coalescent (and which has a longer history in population genetics; Kingman 1982), a marriage that eventually saw the development of a variety of models of viral demography and the estimation of R directly from gene sequence data (Pybus et al. 2000, 2001).

6.1.1 Coalescent approaches to viral epidemiology

In recent years there have been many important developments in the use of coalescent methods to infer aspects of viral demography from sequence data, including relaxation of the earlier restrictive assumption of a ‘strict’ molecular clock. Indeed, the development of ‘relaxed’ molecular clocks, in which lineages can vary in their substitution rates, is arguably one of the most important advances made in modern molecular evolutionary genetics (Drummond et al. 2006). Of equal note was the movement away from basing inferences on a single representation of phylogenetic history, to those based on a very large sample of plausible phylogenies and usually set within
a Bayesian Markov chain Monte Carlo (MCMC) framework, thereby minimizing the impact of phylogenetic error (Drummond et al. 2005). Finally, the development of the Bayesian ‘skyline plot’ allows changing patterns of genetic diversity through time to be analysed without specifying a demographic model, and which can be interpreted as a measure of N_e under strictly neutral evolution (Drummond et al. 2005).

Despite these advances, there are still important limitations in the coalescent approach as applied to RNA viruses, and hence to the phylodynamic approach in general. First, on the theoretical side, it is clear that the analytical models currently available to describe the demographic history of RNA viruses are limited in their scope, despite the development of the Bayesian skyline plot. Although simple demographic models like constant population size, or exponential or logistic growth, might apply to viruses with ‘simple’ population dynamics, such as HIV and HCV, they are woefully inadequate for viruses like influenza or measles which exhibit more complex epidemiological dynamics. Evidently, for the field of phylodynamics to advance, it is crucial that we develop more realistic models of demographic history.

A second major theoretical limitation of the coalescent is that it is compromised, to some extent, by the occurrence of a number of other population processes, namely recombination, natural selection, and population subdivision. As incorporating these processes into a coalescent framework is an active and complex research area, I will not discuss this any further here. However, given that RNA viruses spread on a spatial plane, and this process is often recorded in the structure of phylogenetic trees

Fig. 6.2 The lineages-through-time approach to inferring the population dynamics of RNA viruses. (a) The relationship between an ultrametric (i.e. constant-rate) phylogenetic tree (top panel) and the number of lineages through time (bold line, bottom panel). Arrows show the times between coalescent events. (b) ‘Epidemic transformation’ of the number of lineages through time for 24 env gene sequences of HIV-1 (see the original publication for more details of this transformation). An approximately straight line under this transformation, as here, is indicative of exponential population growth. Adapted from Nee et al. (1995) with permission.
6.2 Cross-species transmission • 135

(see Biek et al. 2007 for an interesting example as well as section 6.4), it is clear that building spatial dynamics into the coalescent will be hugely beneficial.

The final, and practically the most important, limitation of the phylodynamic approach is the lack of availability of gene sequence data of the right temporal resolution to enable detailed demographic inference. For those viruses with slow population dynamics, such as HIV or HCV, and where there is often an extended waiting time between transmissions, the epidemiological signals of interest can usually be recovered with samples collected on only a yearly basis. However, for those viral epidemics that have a more distinct periodicity, such as annual cycles, it is clear that a far more fine-grained temporal sampling is required to extract all epidemiological information from sequence data. At the time of writing, the only RNA virus where sufficient data are available to infer precise population dynamics is influenza A virus, where genome sequence data have been collected on a daily basis from diverse populations (Ghedin et al. 2005). Coalescent analyses of these data have provided important insights into the population dynamics, and interactions, among the H1N1 and H3N2 subtypes of influenza A virus (Rambaut et al. 2008) (see Fig. 3.5 in this volume). It is hoped that similar large-scale genome projects, with linked epidemiological information, will now be undertaken for other acute RNA viruses.

6.2 Cross-species transmission, co-divergence, and emergence

Understandably, most definitions of emerging viruses focus on the issue of disease. This means that there is often no distinction between those viruses that spread efficiently among us, and those that only result in sporadic infection. Indeed, it seems that many, if not the majority, of the emerging diseases of humans represent dead-end infections with little or no onward transmission. This may then represent the natural, ‘background’ dynamics of cross-species transmission: human populations are continually exposed to new pathogens, but few ever become established. For example, the vast majority of avian-to-human transmissions of influenza A virus result in dead-end infections, and only very occasionally in major pandemics (Taubenberger et al. 2005). The problem that faces those working in this area is identifying and quantifying the factors that determine whether a new disease will survive and grow into a fully-fledged epidemic, or will fade out with no subsequent transmission. To understand emergence it is therefore crucial to understand how and why only some viruses are able to establish long-term transmission networks (Wolfe et al. 2007).

6.2.1 The RNA/DNA divide again

Perhaps the most powerful general ‘rule’ relating to the evolution of viral emergence is that there is a major division between those viruses that frequently jump species boundaries, and that those that co-diverge with their host species over longer stretches of evolutionary time. This generally mirrors the distinction between
RNA and DNA viruses (Holmes 2008) (Table 6.1). Specifically, RNA (and ssDNA) viruses tend to (but certainly not always: think SFV) establish only short-term acute infections in their hosts and evolve by a mechanism of cross-species transmission, whereas dsDNA viruses tend to result in persistent infections and experience long-term virus-host co-divergence, in which the evolutionary history of the virus tracks that of its host species over many millions of years. As RNA viruses are the most common cause of emerging diseases in humans, so host jumping is the principle mechanism of viral emergence (Woolhouse 2002). Understanding the mechanisms that determine cross-species transmission is therefore fundamental to understanding the nature of viral emergence. In fact, the ability of viruses to jump between hosts of different species can be thought of as an extension of the ‘normal’ mode of transmission in most RNA viruses, in which viruses move horizontally among members of the same host species.

The evolutionary division between host-jumping RNA viruses and co-diverging DNA viruses correlates with a number of other key characteristics of these pathogens, particularly their mode of transmission, their virulence, and their rates of evolutionary change (Table 6.1). To summarize, acute RNA viruses tend be transmitted horizontally by aerosols, body fluids, faecal–oral; vector-borne, can result in infections of extremely high virulence, and can evolve with great rapidity. The end result of occupying this part of epidemiological parameter space is that acute RNA viruses often require large and well-connected host populations to survive: a reduction in the number of susceptible hosts to below a virus-specific critical community size (CCS) will result in $R<1$ and thus extinction. In contrast, chronic dsDNA viruses tend to be transmitted either sexually or vertically (that is, between mother and offspring), are often of lower or delayed virulence, as the virus is required remain in the host for extended time periods to ensure transmission, and evolve more slowly. The evolution of persistence in viral infections may therefore often require a mode of transmission—sexual or vertical—that facilities long-term co-divergence

<table>
<thead>
<tr>
<th>Property</th>
<th>RNA virus-like</th>
<th>DNA viruses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome type</td>
<td>RNA; ssDNA</td>
<td>dsDNA</td>
</tr>
<tr>
<td>Genome size</td>
<td>Small (<32,000)</td>
<td>Small or large</td>
</tr>
<tr>
<td>Substitution rate</td>
<td>High (10^{-2}–10^{-5} subs/site/year)</td>
<td>Low (10^{-7}–10^{-9} subs/site/year)</td>
</tr>
<tr>
<td>Infection type</td>
<td>Generally acute</td>
<td>Generally persistent</td>
</tr>
<tr>
<td>Emergence</td>
<td>Cross-species transmission</td>
<td>Long-term co-divergence</td>
</tr>
<tr>
<td>Transmission mode</td>
<td>Aerosol; body fluid; faecal–oral; vector-borne</td>
<td>Sexual; vertical</td>
</tr>
<tr>
<td>Critical community size</td>
<td>Large</td>
<td>Small</td>
</tr>
<tr>
<td>Virulence</td>
<td>Can be high</td>
<td>Often low</td>
</tr>
</tbody>
</table>

Table adapted from Holmes (2008) with permission.
6.2 Cross-species transmission

• Early evidence for this fundamental ecological division among viruses were the classic studies of Francis Black who noted that indigenous Amerindian populations do not carry acute RNA viral infections such as measles and mumps endemically because their populations are insufficiently large to allow $R > 1$ (Black 1975). In contrast, these same Amerindians frequently carried persistent infections, such as various herpesviruses, presumably because these require a smaller CCS to sustain themselves at $R > 1$. The root cause of the division between RNA and dsDNA viruses most likely rests with their very different rates of evolutionary change (section 3.1; see below).

6.2.2 Inferring co-divergence

The principal evidence for co-divergence between viruses and their hosts is a significant match in their tree topologies, and which is currently fulfilled by only a small number of RNA viruses (Jackson and Charleston 2004; Switzer et al. 2005; section 3.1). In addition, it is also the case that a variety of other ecological processes can produce viral phylogenies that superficially match those of their hosts, wrongly leading to the conclusion that there has been long-term co-divergence, particularly when sample sizes are small. First, an important rule of thumb from those studies of viral emergence undertaken to date is that the closer the host species involved, the more likely that viruses are able to successfully jump between them (DeFilippis and Villarreal 2000; Holmes and Rambaut 2004; see below). Played out in full, this phylogenetic effect—which can also be thought of as ‘preferential host switching’ (Charleston and Robertson 2002)—may result in a pattern of pure cross-species transmission that generally mirrors that of co-divergence. It is just such a process that may explain the current biodiversity of the primate lentiviruses (see section 7.2). Briefly, although the discovery of endogenous lentiviruses indicates that these viruses have been in circulation for millions of years (Katzourakis et al. 2007), including in lemurs (Gifford et al. 2008), there is little good evidence for the co-divergence of the simian lentiviruses and their host species (Wertheim and Worobey 2007), and the human lentiviruses (HIV-1 and HIV-2) clearly represent recent cross-species transmissions. A second reason why virus/host co-divergence is not necessarily indicative of an ancient relationship centres around the mode of speciation. If closely related host species tend to live sympatrically (that is, with overlapping geographical ranges), which is to be expected if they also experienced sympatric speciation, then cross-species transmission is again predicted to generate phylogenies that often match those of their host species. Indeed, phylogenetic trees of feline immunodeficiency virus (FIV) from free-ranging cat species show a better match to geographic region than to host phylogeny (Troyer et al. 2008). As such, it is dangerous to draw strong conclusions on the antiquity and mode of viral evolution simply from an examination of current species distributions. However, quantifying the relative rates of cross-species transmission versus co-divergence as modes of RNA virus evolution is clearly an important area for future study. Similarly, the current paucity of our sampling of viruses in nature, particularly from species other
than humans, means that statements on the occurrence of either process should be made with caution.

6.2.3 The evolution of persistence in RNA viruses

As noted above, the majority of RNA viruses cause acute infections. Despite this important generality, a subset of RNA viruses do manage to generate persistent infections in their hosts and some normally acute infections occasionally become persistent, often resulting from a major reduction in the extent of cell lysis. For example, although measles virus usually causes a well-known acute infection, it sometimes results in subacute sclerosing panencephalitis (SSPE), a rare encephalitis that afflicts 1 in 100,000 of those infected and which is associated with persistence. Similarly, persistent infections with enteroviruses have been mooted as the cause of some chronic diseases (Tam and Messner 1999). A brief discussion of the evolution of persistence is therefore merited. Importantly, comparative analyses can assist in determining the causes of persistence. For example, in the case of feline calicivirus (FCV), a detailed molecular phylogenetic analysis revealed that ‘persistence’ in this virus is in fact largely explained by continual reinfection (Coyne et al. 2007). It is therefore possible that a number of other cases in which viruses are claimed to cause persistent infections are in fact better explained by the reinfection of the same hosts in the absence of strong protective immunity, particularly in hosts that live at high population densities.

It is meaningful to discuss persistence both in terms of the intra-host mechanisms that allow its occurrence, and the broader evolutionary processes by which it might be favoured. Within hosts, persistence can be thought of as a particular form of virus–host interaction. For RNA viruses this often involves either immunotolerance, in which viruses do not stimulate a strong immune response against them, or immune escape, such that persistence is associated with active evasion (reviewed in Oldstone 2006). Immunotolerance may explain persistence in viruses such as GBV-C, in which long-term infection is not associated with an accumulation of antigenic variation, including an absence of the ‘hypervariable’ regions of antigenically variable sites observed in the related flavivirus HCV (Zampino et al. 1999; Sheridan et al. 2004). Indeed, HCV represents a classic case in which the evolution of persistence clearly results from immune evasion (Grakoui et al. 2003; Cox et al. 2005). An additional form of persistence occurs in those normally acute RNA viruses that are not cleared by hosts that are severely immunocompromised, most commonly AIDS patients (for example, Klimov et al. 1995, and see section 6.5 in this volume). That persistence in this case is associated with a weakened immune system again showcases the importance of the interaction between virus and host immune response. However, this is not always so. For example, in the case of HTLV-I, persistence may simply be a consequence of more rapid viral replication than immune clearance (Asquith and Bangham 2008). Similarly, defective interfering particles have been implicated in developing persistence both in vitro and in vivo (Bangham and Kirkwood 1990). Persistence may also be associated with widespread tissue diffusion, as appears to be the case in some
hantaviruses (Botten et al. 2003), including migration to non-dividing cells, as has been shown in coxsackievirus (Tam and Messner 1999). In the latter case persistence is also associated with a noticeable lack of intra-host viral evolution.

At the epidemiological scale persistent infection presents a number of properties that might be favoured by natural selection. First, when host populations are small and sparse, persistence provides viruses with a better chance of infecting new hosts, thereby increasing R. It is therefore no surprise that the majority of the infections that characterize small Amerindian populations are persistent ones (Black 1975). Similarly, persistence is central to sexual and vertical (mother-to-child) transmission, as these obviously require hosts to carry viruses for extended time periods. In other cases, however, the evolution of persistence may be ‘short-sighted’ at the epidemiological scale such that it is out of reach of natural selection. For example, each strain of SSPE is generated, independently, from a normal (non-SSPE) isolate of measles virus, and is unable to complete a full infectious cycle (Hirano 1992). As SSPE isolates are not transmitted among hosts they fall in diverse positions on phylogenies of measles virus (Woelk et al. 2002). This is likely true of other cases where persistence is associated with the production of defective viruses.

6.2.4 Host phylogeny and viral emergence

One of the most frequently cited ideas in the realm of viral emergence is that there are phylogenetic ‘constraints’ to the process of cross-species transmission, such that the more closely related the host species in question, the greater the chance that viruses will be able to jump between them and successfully establish productive infections (DeFilippis and Villarreal 2000). For example, under this model humans are most likely to acquire new viral infections from other species of primate. However, this simple evolutionary rule ignores the fact that it is usually difficult to disassociate the probability of successful transmission from the probability of exposure: although humans are obviously more closely related to other primates than to rodents, the global human population is more often exposed to the latter, enhancing their role as reservoir populations. In addition, rodents (and bats) also live at high population densities which, by allowing more viruses to attain their CCS, entails that they are able carry both a greater number and more virulent pathogens.

There are some data that support the ‘phylogenetic distance’ theory, although much of it is indirect. Anecdotally, there is no evidence that viruses from organisms as divergent as plants, fish, reptiles, or amphibians have ever been able to infect humans (Holmes and Rambaut 2004), even though in the case of plant viruses exposure might occur on a regular basis through the consumption of infected food; as a case in point, perhaps 10% of cabbages and 50% of cauliflowers are infected with cauliflower mosaic virus (Hull et al. 2000). Rather, the majority of human viruses are of mammalian origin, with an occasional few, and famously influenza virus, coming from birds (although WNV is also an avian infection, human-to-human transmission is not thought to occur). In some cases experimental studies have even shown that viruses from non-human primates, such as sylvatic dengue, have the
capacity to replicate in human cells, thereby facilitating their emergence (Vasilakis et al. 2007b). In addition, while it is the case that insect viruses often infect human populations (that is, the arboviruses), these always jump from another mammalian species, where they act as transmission vectors, rather than directly from insects. Arboviruses as a whole are in fact less able to evolve sustained transmission cycles in new hosts than those viruses transmitted by other means (Woelk and Holmes 2002; section 3.3).

More direct evidence for a phylogenetic component to emergence was a large-scale comparative analysis which found that evolutionary relationship was the best predictor of whether primate species shared pathogens (Davies and Pederson 2008). Intriguingly, however, geographical overlap was a better predictor than phylogeny in the case of viruses, again highlighting the importance of ecological contact in disease emergence (although this study did not make the vital distinction between RNA and DNA viruses). There are also some important examples demonstrating how frequently RNA viruses jump between primate species. As well as HIV-1 and HIV-2, whose ultimate origins lie with chimpanzees (Pan troglodytes troglodytes) and sooty mangabey monkeys (Cercocebus torquatus atys), respectively (section 7.2), a variety of other major human RNA viruses seem to have their origins in non-human primates. These include DENV, GBV-C, HTLV-I and -II, and YFV. These cases also illustrate how human encroachment into the virgin forest homes of primate species has had a major bearing on disease emergence (Wolfe et al. 2005). It is also likely that HBV falls into this category, although ‘reverse’ transmission from humans to apes cannot be excluded as the genetic diversity present in ape HBVs is set within that sampled from humans on phylogenetic trees (Starkman et al. 2003; Holmes 2008). Indeed, there are a number of examples of humans transmitting their viruses to other primates, and often with serious consequences, as appears to be the case for measles (Ferber 2000), other paramyxoviruses (Köndgen et al. 2008), and TTV (Okamoto et al. 2000). A combination of increasing population size and changing agricultural practices makes humans the perfect vector for viral diseases.

There may also be a simple mechanistic basis for the relationship between phylogenetic distance and the likelihood of viral emergence. Specifically, as the ability to recognize, infect, and be released from host cells is a key component of cross-species transmission (Baranowski et al. 2001; Woolhouse 2002; Parrish et al. 2008), then viruses should be better able to jump between phylogenetically related host species as these will usually harbour more closely related cell receptors. A reliance on conserved cell receptors may explain the very high numbers of host species (>200) that some plant viruses are able to infect (Reanney 1982). However, the rapid rate of RNA virus evolution also predicts that highly dependent relationships between viruses and cell receptors will be established very quickly—viruses rapidly become specialists unless they are continually exposed to alternating hosts—so that the probability of successful cross-species transmission will decrease with increasing phylogenetic distance (Fig. 6.3). Such a rapid evolution of host specificity has been observed in experimental populations of RNA phages (Duffy et al. 2007). In the same vein, the
more slowly evolving dsDNA viruses should initially be able to jump wider phylogenetic boundaries—because host specificity will take longer to evolve—but, when they do fully adapt to their host, dsDNA viruses will find it more difficult to make subsequent species jumps. This may in part explain the tendency for dsDNA viruses to co-diverge rather than move horizontally among species (Holmes 2004), and more generally why dsDNA viruses are less often a cause of emerging disease than RNA viruses (Woolhouse et al. 2001; Woolhouse 2002).

Of course, the general principles developed here should never be treated as anything more than rules of thumb, particularly as on occasion RNA viruses are able to switch among more divergent host species (Woolhouse 2002). To reiterate, ecological opportunity is also critical to the process of emergence. For example, bats are the most likely reservoir species for both EBOV (Leroy et al. 2005) and SARS-CoV (Li et al. 2005). It is also possible that closely related host species may share some of the alleles that determine immune responses to specific pathogens, and which may impact on the likelihood of cross-species transmission. This phenomenon is well documented in the case of major histocompatibility complex (MHC) loci, where some allelic lineages are present in multiple species (Figueroa et al. 1988).
6.3 The evolutionary genetics of viral emergence

Another of the most important questions in the evolution of viral emergence is whether, following cross-species transmission, emergent viruses must actively adapt to develop sustained transmission in their new species, or that the process of emergence is essentially neutral, simply reflecting differences in the frequency of exposure, with little post-transmission adaptation (Fig. 6.4).

6.3.1 Adaptation and emergence

According to one model, adaptation to a new host species during the early period of an epidemic is essential to viral emergence, because by elevating $R>1$ sustained transmission networks can be established (Antia et al. 2003) (Fig. 6.4). Because selection for enhanced transmission cannot occur without at least some transmission already in place, this adaptive process is thought to occur during the ‘stuttering chains of transmission’ that might characterize the initial appearance of a virus in a new host species (Antia et al. 2003; Woolhouse et al. 2005). The small clusters of H5N1 influenza A virus transmission in humans (Kandun et al. 2006) may constitute exactly these stuttering chains.

It is very reasonable to assume that cross-species transmission routinely involves adaptive evolution as a number of key barriers must be breached for any emerging virus, including (i) evasion of both innate and adaptive immunity, (ii) infection of a host cell, (iii) replication utilizing host factors, (iv) exit from the host cell, and (v) successful transmission to other individuals in the population (reviewed in Webby et al. 2004). Clearly, adaptive evolution could occur at any, and perhaps all, of these stages. Empirical evidence for just such an adaptive process is provided by the carnivore paroviruses (ssDNA viruses), one of the best-documented cases of emergence. The origins of canine parovirus (CPV), which resulted in a major epidemic in dogs during the 1970s, lie with the feline paroviruses (FPV) that were described previously in cats (Parrish 1990). That this species transfer involved direct adaptation is manifest in a greatly elevated rate of nucleotide substitution, including $d_N>d_S$, on the branch linking FPV and CPV (Shackelton et al. 2005). More importantly, these fixed mutations have direct and measurable effects on binding to the canine transferring receptor (Hueffer et al. 2003). Interestingly, the earliest CPV isolates lost their ability to infect cats, although this was regained in those sampled at later time points (Truyen et al. 1996), arguing that these mutations have important pleiotropic effects. However, what proportion the mutations associated with adaptation in CPV arose in dogs, as opposed to being seeded from cats, is unclear.

Direct adaptation to a new host species also seems to have been central to the emergence of Venezuelan equine encephalitis virus (VEE), where a single positively selected amino acid change—position 213 of the E2 envelope glycoprotein—appears to be responsible for the adaptation of rodent (reservoir) viruses to horses (Brault et al. 2002; Weaver and Barrett 2004; Anishchenko et al. 2006). Similarly,
Fig. 6.4 Evolutionary models for the cross-species transmission of RNA viruses. (a) The donor (black) and recipient (grey) species represent two distinct fitness peaks separated by a steep fitness valley. Multiple adaptive mutations are therefore required for the virus to successfully establish onward transmission in the recipient host. (b) The donor and recipient species are separated by a shallower fitness valley, for example because the host species are relatively closely related. This facilitates successful cross-species transmission as a smaller number of advantageous mutations are required. (c) If multiple advantageous mutations are required for a virus to adapt to a new host it is possible that these evolve progressively in the recipient species, although this requires some onward transmission. (d) Under an alternative model, many of the mutations required for adaptation to a new host species pre-exist in the donor species and transmitted, by chance, in a single event. This will accelerate viral emergence. Intermediate hosts may also facilitate cross-species transmission. In each case mutations are represented by closed circles. Also see Fig. 6.6. Adapted from Kuiken et al. (2006) with permission.
adaptation to the principle vector of DENV in an urban human setting, the *Aedes aegypti* mosquito, may have been central to enabling its sustained transmission in humans (Moncayo *et al*. 2004), although sylvatic (i.e. monkey) DENVs themselves have little trouble replicating in human cells (Vasilakis *et al*. 2007b). A role for adaptation in viral emergence can also be seen in some plant viruses. For example, in the case of *Pelargonium* flower break virus (PFBV) five amino acid changes, which appear convergently, are required to adapt this virus to *Chenopodium quinoa* hosts (Rico *et al*. 2006). Finally, it has recently been demonstrated that a single amino acid change to arginine at position 31 in the *gag* gene has occurred independently on the three main lineages of HIV-1 (M, N, O) following its jump from chimpanzees (SIVcpz) (Wain *et al*. 2007). Intriguingly, this mutation allows HIV-1 to replicate better in human than chimpanzee cells, although the precise mechanistic basis for this is uncertain. This strongly suggests that the transition from SIV to HIV involved adaptive evolution (see also Heeney *et al*. 2006), a hypothesis compatible with a change in \(d_\text{s}/d_\text{S} \) on the branches leading to human isolates (Sharp *et al*. 2000), and that the suppression of T-cell activation by the lentivirus Nef protein—a crucial component of the anti-HIV response—was lost on the branch leading to HIV-1 (Schindler *et al*. 2006).

6.3.2 ‘Off-the-shelf’ emergence

A competing (although not mutually exclusive) model for viral emergence is that rather than the emergent virus adapting to the new host species following exposure, successful emergence will only occur if the recipient host is exposed to a virus that already possesses at least a subset of the necessary mutations, such as those for receptor binding. In other words, successfully emergent strains are those that are in some sense *pre-adapted* to establish productive infections in the new host species, so that the probability of emergence then becomes a function of the frequency of exposure. Mark Woolhouse has cleverly termed this ‘off-the-shelf’ adaptation compared to the ‘tailor-made’ model of emergence described above. Indeed, that the majority of emerging infections (at least in humans) result in dead-end infections implies that even short transmission chains are difficult to establish for most viruses. Moreover, for the majority of emergent viruses it has been difficult to show conclusively that cross-species transmission is associated with adaptation in the recipient host, although this in large part may reflect the complexities in undertaking analyses of this sort. To take one high-profile example, although sequence analyses suggest that SARS-CoV was subject to positive selection during its brief stay in the human population (Yeh *et al*. 2004; Kan *et al*. 2005), it is unclear whether this reflects adaptation to facilitate transmission in the new host species, via utilization of the angiotensin-converting enzyme 2 (ACE2) and CD209L receptors (Li *et al*. 2003; Jeffers *et al*. 2004), or selection for immune escape. Interestingly, although adaptation to ACE2 may have been fundamental to the successful cross-species transmission of SARS-CoV from bats to humans via Himalayan palm civets (*Paguma larvata*) (Li *et al*. 2006), it is also used as a receptor for other human coronaviruses (Hofman *et al*. 2005).
The complexities of deciphering the evolutionary genetics of viral emergence are clearly seen in influenza A virus. A necessary requirement for the successful infection of any host species is binding to the sialic acid cell receptors found on cell-surface oligosaccharides (although mutations in other genes, notably the polymerase protein PB2, also play a key role; Matrosovich et al. 1997; Taubenberger et al. 2005; Hatta et al. 2007). In humans, influenza viruses typically infect cells in the nose, throat, and lungs, preferentially binding to a sialic acid in an α-2,6 linkage to galactose. In contrast, avian influenza viruses typically infect cells in the gastrointestinal tract, preferentially binding to an α-2,3-linked sialic acid (Carroll et al. 1981; Rogers and Paulson 1983) (Fig. 6.5). This specificity is determined by different amino acid changes in different HA subtypes; for example, HA1 positions 226 and 228 in subtypes H2 and H3, and position 190 in subtype H1 (Horimoto and Kawaoka 2005; Stevens et al. 2006), whereas analyses of H5N1 viruses have identified a role for changes at HA1 positions 182 and 192 (Yamada et al. 2006). Such binding differences represent an important barrier to the infection of humans and other mammals by avian influenza viruses (Horimoto and Kawaoka 2005). However, in the case of H5N1, binding to sialic acid in the (avian) α-2,3 linkage does occur in cells of the lower respiratory tract of humans (Shinya et al. 2006; van Riel et al. 2006), although replication in cells of the upper respiratory tract is considered necessary for sustained transmission. The key question, therefore, is whether the critical receptor-binding mutations appear *de novo* in humans, in the short transmission networks of people who initially suffer avian influenza, or pre-exist in the avian population. Although

![Fig. 6.5 Patterns of α-2,3- and α-2,6-sialic acid linkage in influenza A viruses from birds and humans. In the avian pattern the sialic acid is attached by its carbon 2 (C-2) to the C-3 of the galactose molecule, whereas in humans the sialic acid attaches to the C-6 of galactose. Adapted from Palese and Shaw (2007) with permission.](image-url)
human-like receptor-binding mutations are undoubtedly deleterious in birds, they will be regularly produced by mutation and there are obviously many infected birds (including perhaps 10% of mallard ducks; Olsen et al. 2006). More intensive surveys of intra-host genetic variation in avian species are clearly a central requirement to answering this question.

As should be evident from the discussion so far, not only is there a great deal of uncertainty in the evolutionary processes that underpin emergence, but a number of advances are need to elucidate the role of adaptive evolution in viral emergence. My particular hobby-horse is that despite the growth of genome sequence data from RNA viruses, there are remarkably few examples of where such data are available from both the donor and recipient species. As a case in point, although dengue is one of the most important emerging diseases of humans and the genomic database of DENV isolates is growing rapidly, only a small number of viruses have been isolated from the most likely donor species, Old World monkeys (Wang et al. 2000; Vasilakis et al. 2007a, 2008). Improvements are also needed in the analytical methods available to detect positive selection at sporadic amino acid sites along a single lineage, particularly as this may be the adaptive process most often associated with viral emergence. Indeed, given the frequency with which adaptive evolution is observed when RNA viruses are passaged in different cell types (section 3.1), it seems naïve at best to think that successful cross-species transmission does not involve at least some selectively driven optimization.

6.3.3 The fitness landscapes of emergence

One potentially useful conceptual framework for the evolutionary genetics of cross-species transmission may come from earlier studies of the evolution of Batesian mimicry in species like butterflies, in which the mimic exhibits similar ‘signals’ to the model but does not possess the unpalatability that repels predators. Although the evolution of mimicry and emergence may at face value appear to have little in common, they share some theoretical common ground as both deal with movement between distinct fitness peaks separated by potentially steep-sided fitness valleys. While an intermediate mimic is of no use, as it can still be recognized by a prey organism, so is an RNA virus that is intermediate between being able to replicate in two different host species.

Although worthy of a book in itself, a general conclusion from explorations of the evolution of mimicry is that mutations of major effect, which allow a large leap across the adaptive valley although not to a new fitness peak, represent an important evolutionary pathway. Once this major fitness jump has taken place, additional mutations with smaller phenotypic effects are able to push the incipient mimic up to the new adaptive peak (Fig. 6.6). More generally, the notion that adaptation involves a few mutations of large effect and more frequent mutations of small effect corresponds to commonly used models for the genetic basis of quantitative traits (Barton and Turelli 1989). In the context of the cross-species transmission of RNA viruses this model is equivalent to suggesting that host specificity is due to a limited number of critical mutations, with the remainder adjusting fitness, likely through epistatic interactions.
Hence, of the 13 genome-wide mutations that have been proposed as required for the adaptation of avian influenza viruses to humans (Finkelstein et al. 2007), most of the variance in fitness may be contributed by only a small number.

Another way in which RNA viruses could potentially cross major valleys in fitness is through the use of intermediate hosts, which act to make the fitness valley shallower (Fig. 6.4). For example, it has been proposed that pigs represent an intermediate ‘mixing vessel’ for avian influenza viruses to acquire the mutations that enable the productive infection of humans (Scholtissek 1987). The Himalayan palm civet may have played such a role in the emergence of SARS-CoV (Li et al. 2006). However, in many cases intermediate hosts species do not exist, or have not been detected, so that they do not appear to constitute a general mechanism allowing viruses to jump to new hosts.

6.3.4 Recombination, reassortment, and viral emergence

Because recombination (and reassortment) is a process that potentially increases fitness by creating advantageous genetic configurations, it might also be supposed that it can assist the process of emergence (Burke 1998) (although recombination is as likely to destroy advantageous genetic configurations as create them). In particular,
recombination may allow viruses to acquire the suite of necessary host-adapting mutations more rapidly than through mutation alone. As a simple case in point consider the primate lentiviruses. Not only are rates of recombination very high in these viruses, with multiple template-switching events occurring during each replication cycle, but recombinant viruses seem to be associated with many cases of cross-species transmission, with the hybrid viruses found in chimpanzees, which then made their way into humans, being a powerful example (Bailes et al. 2003; section 7.2). Similarly, the cross-species transmission of influenza A virus from birds to humans is often associated with reassortment among the haemagglutinin (HA) and neuraminidase (NA) subtypes (Webby and Webster 2001; section 7.1). Indeed, reassortment with a co-circulating human influenza A virus is perhaps the most likely way in which avian influenza viruses can acquire the suite of mutations that facilitate transmission in humans.

Recombination has also been suggested to have played a central role in the emergence of SARS-CoV, particularly as coronaviruses as a family experience relatively frequent recombination (Lai 1996). Specifically, it was proposed that SARS-CoV is a recombinant between diverse avian and human coronaviruses (Stavrinides and Guttman 2004), which may have allowed the virus to acquire the critical amino acid changes required to cause infection in humans (Stanhope et al. 2004). However, more detailed analyses of the relevant sequence data argues against such deep recombination events (Gibbs et al. 2004; Holmes and Rambaut 2004). A recent phylogenetic analysis provided more convincing evidence for a recombination event involving a bat SARS-CoV and as yet unidentified lineage of SARS-CoV (Hon et al. 2008). But as this recombination event clearly occurred before SARS-CoV started spreading in humans, and perhaps before it emerged in the palm civet, it would be wrong to conclude that recombination was essential for SARS emergence. As a final example, recombination is postulated to have played role in the generation of the strain of rabbit haemorrhagic disease virus (RHDV) responsible for the deaths of millions of rabbits globally, although in this case recombination has perhaps changed virulence, rather than host range (Forrester et al. 2008).

Another reason to doubt that recombination is somehow a prerequisite for successful emergence in general is that, as discussed in Chapter 3, the rate of recombination, per nucleotide, in RNA viruses is usually very much lower than that of mutation. Mutation is therefore a more efficient way to create evolutionary novelty than recombination. Indeed, unless the required mutations are already in the population, recombination will be of no consequence to adaptive evolution. In sum, although the occasional recombination event may have kick-started the process of emergence in some viruses, it does not appear central to cross-species transmission.

6.4 The phylogeography of human viruses

The rapid rate of RNA virus evolution makes it natural to investigate their temporal dynamics. However, RNA viruses also exist on a spatial plane, reflecting the
movement and growth of their host species. As a consequence, no study of RNA virus evolution is complete without some consideration of their phylogeography. Those studies of human RNA viruses undertaken to date have revealed a variety of different phylogeographic patterns (reviewed in Holmes 2008). These patterns are presented here largely as a framework to understand the factors structuring viral diversity at the epidemiological scale, rather than as an exhaustive survey of the phylogeography of human RNA viruses. Indeed, the barriers between these patterns are often fluid, and most research that touches on viral phylogeography is usually directed towards broader aspects of molecular epidemiology. I will focus my discussion on five phylogeographic patterns which seem to describe a number of RNA viruses, and which are presented schematically in Fig. 6.7: (i) no spatial structure, such that there is complex, and even random, mixing among isolates sampled from different geographical locations and indicative of frequent viral traffic among localities, (ii) ‘wave-like’ transmission, in which viruses move outwards from a specific starting point, therein generating a relatively simple relationship between genetic and geographical distance, including isolation by distance, (iii) ‘source–sink’ (or ‘core–satellite’) models in which viruses flow from one or a limited number of so-called source populations to other sink populations where they may only survive in the short term (for example, with a strong seasonal basis), and which also may generate regular transmission waves, (iv) ‘gravity-like’ dynamics (Xia et al. 2004), in which patterns of viral transmission are driven by major population centres, which act as gravity (mass) attractors and perhaps following human working patterns (rather like airline routes passing through major or minor hubs), and (v) strong spatial subdivision, in which phylogenetically distinct viral isolates circulate in different geographical localities, with little evidence of movement among them. Importantly, as long as viral sampling is dense enough, and associated geographic and/or demographic data are forthcoming, all these patterns can potentially be distinguished from gene sequence data using appropriate phylogenetic techniques (some specific examples are presented in Chapter 7).

6.4.1 Viruses differ in phylogeographic pattern

Although limited, those analyses undertaken to date show that a variety of human viruses follow each of these patterns, reflecting the relative rates of viral traffic and also the mode of transmission. It is also possible, if not commonplace, for single viruses to exhibit multiple phylogeographic patterns depending on the spatial scale under consideration; for example, comparing single cities to entire continents. A good example is provided by human influenza A virus. In this case phylogeographic structure reflects the fluid movement of the virus among human populations, clearly a consequence of its infectiousness (see section 7.1). On a global scale, influenza A virus seems to fit a source–sink model, with East and South-east Asia acting as a source (Russell et al. 2008), and populations in the northern and southern hemispheres, where the virus is highly seasonal, representing sinks (Rambaut et al. 2008) (Fig. 6.8). This also means that there is little, if
any, persistence of the virus within individual localities in temperate regions over the summer epidemic trough (Nelson et al. 2007, 2008), although there is more continual transmission in tropical regions (Viboud et al. 2006a; Finkelman et al. 2007). However, both wave-like and gravity-like dynamics are observed at other
6.4 Phylogeography of human viruses

Spatial scales. For example, in the USA influenza seems to satisfy the conditions of a gravity model, largely following movement patterns set by adult workflow (Viboud et al. 2006b), whereas in Brazil influenza seems to move southwards in a traveling wave (Alonso et al. 2007). This being said, it is important to recall that the evidence for a number of these spatial patterns comes exclusively from indirect epidemiological data—combined pneumonia and influenza mortality in the case of influenza—as gene sequence data with the appropriate scale of resolution have yet to be obtained. Indeed, there is currently no phylogeographic study of a human virus that is clearly compatible with a gravity model, although this undoubtedly reflects a lack of data. Melding epidemiological and genetic data to decipher the spatial dynamics of RNA viruses within a single geographical region remains an important task for the future.

In contrast, the phylogeographic structure of HCV is often characterized by relatively strong spatial subdivision, such that genetic diversity is partitioned into a series of discrete clades, referred to as types and their component subtypes, many of which also have a distinct geographical and risk group association (Simmonds 2004; Holmes 2008) (Fig. 6.9). The difference with influenza most likely stems from the reliance on lower-rate blood-borne transmission. Populations of injecting drug users in industrialized nations carry subtypes 1a and 3a, which have spread rapidly in these regions during the last 60 years, such that spatial structure has been broken down at

Fig. 6.8 A sink–source model for the phylogeography of human influenza A virus. The putative global source of antigenic diversity in this virus—East and South-east Asia (identified by Russell et al. 2008)—is also indicated. This region of Asia is the most likely global source for influenza because it is densely populated and highly connected, allowing natural selection to act more effectively. Each season viruses are exported to the sink populations in the northern and southern hemispheres. Shading represents different antigenic variants of the virus.

Adapted from Rambaut et al. (2008) with permission.
Molecular epidemiology and phylogeography

While subtype 1b is also very common in industrialized nations, far greater genetic diversity is present in African and Asian populations, often associated with types 2, 4, and 6, and which may have been circulating for thousands of years, although the timescale of HCV evolution is uncertain. Given the probable age of types 2, 4, and 6 it should come as no surprise that they are particularly diverse, containing 18, 18, and 21 subtypes, respectively (see http://hcv.lanl.gov/content/hcv-index). While such a pattern of spatial subdivision is expected if a virus has been associated with humans for extended time periods, it can also be established in very recent time frames given a combination of rapid evolution and strong founder effects. As discussed in section 7.2, it is just such a potent combination that seems to have produced the current global diversity of HIV (Rambaut et al. 2001).

Finally, wave-like transmission is best described for measles virus using detailed incidence data (Grenfell et al. 2001). Unfortunately, there is currently insufficient evidence to support similar conclusions for HCV.

Fig. 6.9 The global genetic diversity of HCV. Subtypes 1a and 1b (and to a lesser extent 3a) dominate infections in industrialized nations, and have been sequenced most frequently, hence their preponderance here. Also note the greater genetic diversity of the type 6 viruses, suggestive of an ancient evolutionary history (most likely in Asia), although the timescale of HCV evolution is uncertain. The tree was estimated using a sample of 200 sequences of the NS5B gene (1777 nt) taken from the HCV database (see http://hcv.lanl.gov/content/hcv-index). The tree was estimated using a maximum likelihood method (PAUP*) with branch lengths drawn to a scale of nucleotide substitutions per site.
gene sequence data available from this virus to determine whether these dynamics are recapitulated at the phylogenetic level. A similar reservation applies to EBOV, where suggestions of a transmission wave in equatorial Africa since 1976 have been proposed using a very small number of gene sequences (Walsh et al. 2005). This will need to verified should more sequences from this notoriously elusive virus ever become available, and is complicated by the long-standing debate over the principal reservoir species of this virus. Fortunately, far better phylogenetic data are available for some other systems. For example, transmission waves have been described in rabies virus (RABV), most clearly when the virus enters susceptible populations for the first time, such as red foxes in Europe (Bourhy et al. 1999), raccoons in the north-east USA (Biek et al. 2007), and foxes in Canada (Real et al. 2005), all of which result in isolation by distance. However, at the global scale RABV exhibits strong population subdivision, reflecting the fact that the primary reservoir of RABV worldwide—the dog—does not move large distances (Bourhy et al. 2008; section 7.4).

6.5 Major evolutionary transitions

Humans have undoubtedly suffered a heavy burden of RNA viral infection throughout their evolutionary history. Indeed, it is likely that the morbidity and mortality due to RNA viruses was one of the greatest challenges facing modern human populations as they migrated from Africa and achieved global colonization: without the protection of prior adaptive immunity, migrating human populations would have been immunologically naïve and susceptible in every new environment they encountered. Conversely, the major population bottleneck humans seem to have experienced as they migrated out of Africa is likely to have resulted in the stochastic loss of a number of viruses, with a reduced population size meaning that only viruses that required a small CCS may have been lucky enough to survive. It is just such a stochastic purging that may explain the apparent paradox that SFV has co-diverged with non-human primates for many millions of years, yet is absent from humans. Similarly, habitat fragmentation, as has clearly happened in populations of great apes, may also lead to the random loss of viral infections in animal species.

As human ecology has changed through time, major new opportunities for viral infection have also been established. Although the ecological history of humans is complex, herein I will ponder four such major ‘transitions’ in the epidemiology of human viral infections, in the spirit of the major transitions in evolution outlined by John Maynard Smith and Eörs Szathmáry in their thought-provoking book of the same name (Maynard Smith and Szathmáry 1995), and which increase complexity at each stage. These transitions are (i) the evolution of farming, (ii) the onset of urbanization, (iii) the rise of global travel, and (iv) the modern human world, characterized by major changes in land use exemplified by widespread deforestation, highly connected networks, and widespread immunodeficiency, concurrent with the rise of HIV infection (Holmes 2008).
6.5.1 The transitions

The abandonment of the hunter–gatherer lifestyle for the sedentary ways of farming some 10 000 years ago was clearly a major turning point in human history. This transition would have changed the burden of RNA virus infections on humans in two ways: by increasing population size and density (i.e. the CCS), thereby allowing acute RNA viruses to spread more easily through human populations, and by bringing humans into closer contact with animal species, in turn increasing the likelihood of cross-species transmission (Dobson and Carper 1996; Diamond 2002). Indeed, palaeo-pathological records indicate that the health of the first farmers was often inferior to that of their hunter–gatherer ancestors (Strassman and Dunbar 1999). In a similar fashion, the major effect of urbanization on the epidemiology of human viral infections would have been to greatly increase the number of susceptible hosts, as well as the contact networks among them (and also making these networks more complex), thereby increasing probabilities of transmission. The rise of urbanization during the last 5000 years may therefore mark the point in time when acute RNA viruses were first able to sustain themselves endemically in humans, without continual replenishment from an animal reservoir population. Measles represents a classic example. The CCS for measles has been estimated at between 250 000 and 500 000 (Bartlett 1957), a population size that would not have been established until the rise of cities. Unfortunately, there are currently no examples where the molecular clock analysis of a human RNA virus has unequivocally demonstrated an ancestry that dates back to the rise of cities or of agriculture, although the latter has recently been suggested for families of plant RNA viruses (Fargette et al. 2008b; Gibbs et al. 2008b).

The obvious importance of global travel as a major ecological transition for human disease is that it allowed the rapid dissemination of viruses to diverse geographical areas. Further, as widespread travel developed relatively recently, the history of human global travel and population subdivision is often written into viral genomes and so relatively easy to reveal through phylogenetic analysis (Holmes 2004). One particularly important historical facet of global travel was the slave trade, which has long been considered as a major factor shaping the spatial distributions of infectious diseases in humans. The importance of this sorry episode in human history is clearly demonstrated in the spread of YFV, long the scourge of humans living in tropical regions (see section 7.2). Phylogenetic analyses provide compelling evidence that YFV moved from Africa to the Americas at the time of the slave trade, in terms of both its pattern of spread and its timing (Bryant et al. 2007). The more recent influence of global travel and migration on the spread of human viruses can be seen with HIV-1. In this case, molecular clock analyses suggest that subtype B of HIV-1 (the subtype first described in the 1980s) spread from Africa to the western world during the 1960s, following the return home of Haitian workers formally based in the Belgium Congo (Gilbert et al. 2007).

Finally, it is clear that the ecology of contemporary human populations has greatly assisted the origin and spread of new viral infections. After all, it is this that has stimulated the current interest in ‘emerging viruses’. There are a range of ecological
6.5 Major evolutionary transitions

155 factors that have facilitated the emergence of new viral infections, or allowed older pathogens to expand their geographical range, including rapid global travel, famine, war, the growth of mega-cities, and changes in agricultural practices and land use such as deforestation. Indeed, it is likely that there is an ecological cause, either direct or indirect, for all emerging diseases of humans (Morse 1995). A powerful example is provided by the emergence of HIV in central West Africa, which is associated with the rise of the logging industry and its impact on the hunting of local bushmeat (Wolfe et al. 2005). This important change in land use meant that humans encroached more on the habitats of those non-human primates that harboured SIVs, resulting in multiple cases of cross-species transmission (section 7.2).

6.5.2 Immunodeficiency and disease emergence

A final aspect of modern human ecology that may, in theory, assist in the emergence of human viral infections is widespread immunodeficiency, closely associated with the AIDS pandemic. Because of a lack of routine anti-retroviral therapy in sub-Saharan Africa where HIV prevalence is at its highest, the majority of those who are HIV infected in this region will go on to develop profound immunodeficiency manifest as full-blown AIDS. As well as having a major impact on human mortality, demography, and work patterns, which may itself affect the epidemiology of other pathogens (for example, by changing the age structure of the population), high levels of immunodeficiency might also impact on the process of viral emergence. If successful emergence is dependent on breaching immune barriers as well as simply infecting new cell types, then widespread immunodeficiency may allow other infectious agents that would have otherwise been cleared by healthy immune systems to gain a foothold in the human population (Weiss 2001). Although there is currently no evidence for this process, it is worth recalling that the global spread of HIV has stimulated a resurgence in opportunistic pathogens like Mycobacterium tuberculosis, which thrive in an environment of weakened immune systems. Similarly, there is also a growing body of data to suggest that normally acute RNA viral infections, such as influenza virus and poliovirus, can establish persistent infections in the face of immunodeficiency (Evans and Kline 1995; Klimov et al. 1995; Kew et al. 1998; Martín et al. 2000; Boivin et al. 2002). The elongated infectious period associated with immunodeficiency may therefore allow acute RNA viruses jumping from other host species to more readily acquire the array of mutations required for human adaptation.
Case studies in RNA virus evolution and emergence

The aim of this penultimate chapter is to put the previous, somewhat general, discussions of RNA virus evolution into the context of real, at-the-coalface, biology, by describing how a small number of viruses evolve in nature. Each case study will consider an RNA virus with a very different biology, epidemiology, and relationship with its host species. I have also selfishly chosen those viruses to which my own research has taken me. Because of space limitations, and the familiarity of some of these viruses, I cannot cover every aspect of their evolution and emergence, and I will bypass most of their basic biology. Rather, I have focused on those areas that best serve to illustrate the major points covered in this book. When reading this chapter it is also important to keep in mind that our success in unravelling the evolutionary history of RNA viruses has resulted from a happy marriage of increased amounts of gene and genome sequence data with new methods of phylogenetic analysis (for example, Drummond et al. 2006).

7.1 The evolutionary biology of influenza virus

7.1.1 The diversity of influenza virus

Influenza viruses are a textbook study in viral evolution, highlighting many of the main issues raised in this book. The viruses themselves possess a segmented ssRNA–genome and cause regular seasonal epidemics in humans, other mammalian species, and birds. They are classified within the family Orthomyxoviridae and fall into three ‘types’—A, B, and C—with types A and B constituting the most closely related pair (Suzuki and Nei 2002b). As those viruses assigned to type A have the most profound implications for human disease, and exhibit the most genetic diversity, I will only consider their evolution here. Remarkably, the annual mortality caused by influenza is still estimated at between 250,000 and 500,000 globally (World Health Organization 2003), although most deaths are due to secondary bacterial pneumonia. Occasional global pandemics can result in 20–40% of the population being infected in a single year, with normal case fatality rates of approximately 0.1% (Taubenberger et al. 2001). As has been well documented, the influenza A virus pandemic of 1918–1919 (the misleadingly named ‘Spanish flu’) may have caused over 50 million deaths globally,
making it the single most devastating outbreak of infectious disease in human history (Johnson and Mueller 2002).

The biodiversity of influenza A virus is usually described in terms of the particular combination of HA and NA surface glycoproteins present in a specific virus. There are currently 16 known subtypes of HA and nine subtypes of NA, all of which are found in wild birds of the orders Anseriformes and Charadriformes, and which represent the natural reservoir species of influenza A virus (Slemons et al. 1974; Webster et al. 1992; Fouchier et al. 2005; Obenauer et al. 2006; Olsen et al. 2006; Munster et al. 2007; Dugan et al. 2008). In total, at least 105 species of wild birds have been identified as harbouring influenza A viruses (Munster et al. 2007; Stallknecht and Shane 1988), and 103 of the 144 possible HA and NA subtype combinations have been identified. Influenza virus in wild birds replicates in the intestinal tract and is excreted in faeces in high concentrations for up to 30 days, with contaminated water efficiently transmitting the virus among hosts (Webster et al. 1978). Avian influenza viruses (AIVs) are also usually maintained as asymptomatic infections in their hosts, in which case they are referred to as low pathogenic avian influenza (LPAI) viruses, although some behavioural consequences of LPAI infection have been reported (van Gils et al. 2007). The importance of AIVs in the context of emerging disease is that they occasionally transmit to other species; either poultry (chickens and turkeys) or mammals (humans, horses, and pigs). These may result in either isolated outbreaks with little or no onward transmission, as has happened a number of times over the last 20 years (for example, involving subtypes H7N7 and H9N2), or less frequently in major human pandemics. Although there has understandably been a great deal of attention devoted to the possibly that H5N1 influenza virus will evolve stable transmission in humans, the process of emergence is perhaps better illustrated by the recent cross-species transmission of H3N8 from horses to dogs (Crawford et al. 2005) and of H2N3 from birds to pigs (Ma et al. 2007).

It is this process of cross-species transmission from an avian reservoir that ultimately led to the global influenza pandemic of 1918, caused by a subtype H1N1 virus (Taubenberger et al. 1997). However, the origins of the 1918 virus remain contentious; in particular, whether it jumped to humans directly from an avian reservoir, or first circulated in another mammalian host such as pigs before infecting humans (Taubenberger et al. 2005; Antonovics et al. 2006; Gibbs and Gibbs 2006b). Although there is no direct phylogenetic evidence to suggest that the 1918 virus jumped into humans straight from birds (and on the current limited data this virus is more closely related to pig than bird viruses), an analysis of mutational patterns provides compelling evidence that the genes of the 1918 virus have an avian-like nucleotide composition (Rabadan et al. 2006). Resolution of the ultimate origin of the 1918 pandemic is clearly going to require the isolation and sequencing of more ‘archival’ viruses, particularly those from the first, less virulent, Spring wave of 1918.

Since 1918, five of the eight genome segments of human influenza A virus have maintained an unbroken evolutionary history without reassortment with viruses from other animal species: those encoding the matrix proteins (M1/2), the nucleocapsid protein (NP), the non-structural proteins (NS1/2), and two of the three polymerase
proteins (PB2 and PA) (Taubenberger et al. 2005). In contrast, new HA and NA segments, as well as the PB1 polymerase segment, have been periodically acquired through reassortment with AIV. As is well documented, these reassortment events also coincided with global pandemics in humans: HA subtype H2 and NA subtype N2 emerged in 1957 (‘Asian flu’), HA subtype H3 appeared in 1968 (‘Hong Kong flu’), and a new PB1 segment was acquired in both the 1957 and 1968 pandemics. Although H1N1 viruses re-emerged in humans in 1977 (Scholtissek et al. 1978) (most likely due to a laboratory escape) and continue to circulate, the seasonal epidemics of influenza A virus in humans that have occurred since 1968 have been dominated by viruses of the H3N2 subtype (Fig. 7.1).

7.1.2 The evolution of avian influenza virus

Although species jumps of AIV to humans understandably dominate our thinking on influenza emergence, in reality most cross-species transmission events involve wild birds passing their viruses to poultry species. Importantly, these events are sometimes associated with a change in virulence, in which poultry-adapted subtypes, notably H5 and H7, evolve into high pathogenic avian influenza (HPAI) viruses following the insertion of a run of basic amino acids at the HA1–HA2 cleavage site (Baigent and McCauley 2003). Subtypes H7N7 and H9N2 have also been directly transmitted to

Fig. 7.1 Epidemiological history of influenza A virus in humans. The figure shows the timeline of pandemics and the emergence of different HA and NA subtypes through reassortment; H1N1 (1918, and again in 1977), H2N2 (1957), and H3N2 (1968). The circles represent the segment composition of each genome. Note that new PB1 segments were acquired in both the 1957 and 1968 pandemics, and that all gene segments circulating in humans today have their ultimate origins in the 1918 virus.
7.1 Evolution of influenza virus

humans, causing severe and occasionally lethal disease (Peiris et al. 1999; Fouchier et al. 2004), although with no onward transmission. The current outbreak of H5N1 is especially notable because this virus, unusually, also causes lethal infections in wild birds as well as humans (Chen et al. 2005).

One of the most important concepts in evolutionary studies of influenza is that AIV in its natural reservoir species of wild water birds is in some form of evolutionary ‘stasis’ (Webster et al. 1992). To anyone reading this book, the idea that an RNA virus can exhibit stasis at the genotypic level, particularly in one which such a rapid replication cycle as influenza virus, should be an anathema. However, for those trained in more classical virology, the concept of ‘evolutionary stasis’ was equivalent to ‘antigenic stasis’, such that the serotypes of AIV do not make the regular changes in antigenicity that characterize human influenza A virus. This then represents another example of the perennial confusion over the difference between antigenic and genetic evolution mentioned in section 3.1. The recent expansion in genome sequence data indicates that both interpretations are correct. Hence, although overall substitution rates in AIV are not much lower than those observed in mammalian influenza viruses, and certainly within the range seen in other RNA viruses (Chen and Holmes 2006), it is also true that rates of nonsynonymous change are reduced (i.e. lower d_N/d_S values), reflecting a lack of antigenic evolution in the HA and NA and particularly strong selective constraints in the genes that comprise the polymerase complex (Obenauer et al. 2006; Dugan et al. 2008). In addition, the genetic divergence between the 16 subtypes of HA and the nine subtypes of NA (and also the two major alleles—A and B—of NS1) is extensive, and characterized by a marked lack of intermediate lineages, such that each subtype appears to represent a distinct ‘fitness peak’ separated by deep fitness valleys (Dugan et al. 2008) (Fig. 7.2).

The expanded species and genomic surveys undertaken in recent years have also revealed that AIV genomes in wild birds experience extremely high rates of reassortment. In this respect, AIVs from wild birds can be thought of comprising a pool of functionally equivalent, and so often interchangeable, gene segments that form transient ‘genome constellations’ (Dugan et al. 2008) (Fig. 7.2b). Hence, in contrast to the situation seen in mammals, there does not appear to be a strong selective pressure for specific segment combinations (H1N1, H3N2, etc.; see below). This distinctive fitness landscape is probably generated by complex patterns of cross-immunity—such that natural selection disfavours viruses that are antigenically similar, resulting in the discrete HA, NA, and NS types—in combination with some geographical and ecological partitioning, particularly between birds that occupy non-overlapping flyways.

A very different situation is seen in mammals, including humans. In this case, distinct eight-segment genome configurations of influenza viruses spread through populations, having ultimately jumped from the AIV gene pool. Because a single segment combination dominates global infections these might almost be thought of as ‘clonal’ outbreaks, although this does not exclude frequent intra-subtype reassortment. In addition, because humans represent a large and spatially mixed population, natural selection is able to act with far greater efficiency on individual subtypes, allowing
The recent emergence of HPAI H5N1 virus represents an important exception to this avian/mammalian divide, as these viruses possess evolutionary rates and \(\frac{d_{S}}{d_{S}} \) ratios closer to those seen in human than AIVs (Chen and Holmes 2006). This is most likely a function of the fact that H5N1 is spreading in large poultry populations, which allows natural selection to efficiently drive rapid antigenic change (Dugan et al. 2008).

Fig. 7.2 The fitness landscapes of AIV. (a) Fitness landscapes of the HA, NA, and NS segments, and represented here by NA. Each cone represents an individual subtype, which are connected by a bifurcating phylogenetic tree. The lack of ‘intermediate’ subtypes—those falling below the disc—reflects the presence of steep fitness valleys, most likely due to strong cross-protective immunity. Occasionally, specific viral subtypes cross species boundaries and emerge in humans, where they experience a continue selection pressure and accumulate amino acid substitutions through antigenic drift. (b) The very different fitness landscapes observed in the PB2, PB1, PA, NP, and M segments from birds. In this case, there is little functional difference among the genetic variants of each segment, producing a flat fitness landscape and allowing frequent reassortment (represented by the horizontal lines). Adapted from Dugan et al. (2008) with permission.
7.1 Evolution of influenza virus

7.1.3 Antigenic drift and shift

Despite the growing interest in AIVs, most research has understandably focused on those viruses that infect humans. Perhaps the most famous inference here is that there is a major division between the seasonal or epidemic evolution of the virus, manifest as the ‘antigenic drift’ of HA (and to lesser extent NA), and the evolution of pandemic forms, in which new viral segments enter the human population through reassortment with AIV. This latter process is usually termed ‘antigenic shift’. While there is no doubt that the division between antigenic drift and shift is broadly correct, comparative analysis of genome sequence data has revealed that our understanding of these processes needs some refinement (reviewed in Nelson and Holmes 2007).

Antigenic drift occurs because the human immune response to viral infection is leaky rather than completely cross-protective, so that natural selection favours amino acid variants of the HA and NA proteins that evade immunity, infect more hosts, and hence proliferate (Fitch et al. 1997). Although both the HA and NA proteins contain antigenic sites where immune-driven natural selection may occur, the HA1 domain of the HA protein contains the highest concentration of epitopes and correspondingly experiences the strongest positive selection (Ina and Gojobori 1994; Fitch et al. 1991, 1997; Bush et al. 1999; Suzuki 2006b). This explains why the H3N2 component of the influenza vaccine needs to be updated so regularly. At the phylogenetic scale, this continual selective turnover of amino acid variants produces the distinctive ‘ladder-like’ (or ‘cactus-like’) phylogenetic tree of the HA1 domain, in which a single main trunk lineage depicts the pathway of advantageous mutations fixed by natural selection from past to present (Fitch et al. 1991, 1997; Ferguson et al. 2003) (Fig. 7.3). In contrast, the short side branches stemming from this main trunk represent those viruses that die out either because they were insufficiently antigenically distinct to evade immunity, or because they carried deleterious mutations which seriously hampered their fitness. Although this is an old concept, there is still considerable debate over what virological and/or epidemiological processes so strongly favour the survival of a single HA1 trunk lineage in human H3N2 viruses, while multiple lineages co-circulate more frequently and antigenic evolution proceeds more slowly in populations of human H1N1 (Ferguson et al. 2003; Rambaut et al. 2008), equine H3N8 (Daly et al. 1996), and influenza virus types B (Yamashita et al. 1988; Kanegae et al. 1990) and C (Buonagurio et al. 1985).

Although antigenic changes in the HA are clearly important determinants of viral fitness, this essentially ‘progressive’ model of influenza A evolution was largely based on studies of the HA1 domain in isolation. As such, the characteristic ladder-like phylogeny depicts the evolutionary history of a single protein, not the entire virus. Indeed, detailed phylogenetic analyses of large-scale genome sequence data from isolates of H3N2 has revealed that the evolutionary pattern observed in the HA1 domain does not always apply to the rest of the genome (Ghedin et al. 2005; Holmes et al. 2005; Nelson et al. 2006). In particular, multiple viral lineages often co-exist on a limited spatial and temporal scale, reflecting the continual importation of genetic diversity
into specific localities (Holmes et al. 2005; Nelson et al. 2006, 2008; Russell et al. 2008) (Fig. 7.4). In addition, that different segments can have very difficult phylogenetic histories reflects a high rate of reassortment (Holmes et al. 2005), a process that is considered in more detail below.

7.1.4 Antigenic cartography and the punctuated evolution of HA

It is also becoming increasingly clear that the antigenic drift of HA1 occurs in a more punctuated manner than previously realized, with periodic episodes of adaptive evolution that often have a major impact on antigenicity (Smith et al. 2004; Koelle et al. 2006; Nelson et al. 2006; Wolf et al. 2006). The episodic nature of the antigenic evolution of HA1 is especially well documented in antigenic maps—so-called ‘antigenic cartography’—an innovative approach that has implications beyond its initial application to influenza (Smith et al. 2004). Antigenic cartography involves the

Fig. 7.3 Phylogenetic patterns in human influenza viruses. (a) Phylogenetic tree of the HA gene of H3N2 human influenza viruses (150 sequences) sampled between 1985 and 2005. Note the distinctive ladder-like branching structure indicative of continual antigenic drift. As a comparison, the phylogeny of 150 sequences of the HA gene of human influenza B virus (b) is shown over the same timescale. Note the slightly shorter root-to-tip time depth and the co-circulation of multiple lineages. All trees were estimated using the maximum likelihood method available in PAUP* (Swofford 2003).
Spatial structure of human H1N1 influenza A virus sampled from the 2006–2007 epidemic season in the USA. Eight phylogenetically distinct viral clades are present (A–H), all of which are likely to represent independent entries into the USA. Shaded rectangles contain individual isolates from the region of the USA associated with that shade (see map): region 1 (north-east), region 2 (mid-Atlantic), region 3 (south), region 4 (mid-west), region 5 (south central), and region 6 (west). Taken from Nelson et al. (2008) with permission.
construction of a matrix of haemagglutinin inhibition (HI) assay distances among viral isolates which are then plotted to produce a cartographic surface, analogous to a normal geographical map. Importantly, this map also enables a tentative link to be made between genotype and phenotype (Fig. 7.5). Antigenic maps of HA from H3N2 viruses sampled since 1968 reveal that major jumps between antigenically distinct clusters of sequences occur on a roughly 3-year periodicity (Smith et al. 2004). Although these antigenic ‘cluster jumps’ are also usually apparent as long branches on HA1 phylogenies, small genetic changes sometimes have a major effect on antigenicity. Further, as the cluster jumps tend to correspond to occurrences of vaccine failure (de Jong et al. 2000), they clearly represent a better predictor of antigenic novelty than genotypic data in isolation.

Unfortunately, the rules—should any exist—that govern the path that influenza A virus takes across the cartographic surface are still uncertain, and represent a major research goal (Boni et al. 2006). Further, and as discussed in more detail below, the

![Fig. 7.5](image)

Fig. 7.5 Comparison of the phylogenetic and antigenic evolution of the HA1 domain of human H3N2 influenza A virus from 1968 to 2003. Antigenic clusters, such as FU02, are coded by shade in the same way in both panels. In the antigenic map (right), antigenic (HI) distance is represented by both the horizontal and vertical axes, with each grid square representing one unit of antigenic distance. Adapted from Smith et al. (2004) with permission.
antigenic evolution of HA cannot be taken out of context of that which occurs across the virus genome as whole. One very elegant model is that the evolutionary dynamics of HA are shaped by the epistatic interactions among the amino acids that make up this protein, such that they form a 'neutral network' (Koelle et al. 2006). The evolution of HA within the network is characteristically 'epochal', with occasional major bursts of amino acid change which in turn are associated with antigenic cluster jumps. However, there is currently no evidence that influenza, or any other RNA virus, evolves in a manner that conforms to a neutral network. Indeed, a key argument of this book is that the limited genomic space available to RNA viruses, and the complex constraints to which they are subject, make the existence of truly neutral networks unlikely.

There is also growing evidence that antigenic drift does not occur within the time frame of a single epidemic season in a single locality. Specifically, phylogenetic studies of sequences obtained from the USA (Nelson et al. 2006, 2008), France (Lavenu et al. 2006), and Denmark (Bragstad et al. 2008) have shown that few amino acid changes are fixed in HA1 within populations at the seasonal scale, with the importation of viruses a far more important source of genetic diversity. Shortly, I will explain the apparent paradox for why antigenic drift in HA1 is commonly observed a global scale, yet rarely within individual populations.

As has been noted many times previously, severe influenza pandemics may occur following an antigenic ‘shift’, in which a reassortment event generates a novel combination of HA and NA antigens to which essentially the whole population is immunologically naïve. As noted above, the segmented genome of influenza virus facilitates reassortment between isolates that co-infect the same host cell. There is growing evidence for the importance of reassortment in seasonal influenza, particularly as revealed through the occurrence of phylogenetic incongruence in genome sequence data (Nelson et al. 2006). Further, these estimates of reassortment frequency are likely to represent significant underestimates, because some reassortment events are undetectable by phylogenetic analysis, or result in unfit progeny. It is therefore essential that methods are developed that are better able to estimate the intrinsic rate of reassortment, particularly relative to that of mutation (Nelson and Holmes 2007).

7.1.5 Genome-wide evolutionary processes

Reassortment also appears to be important in the generation of evolutionary novelty in influenza A virus. As a case in point, the antigenic cluster jump between the SY97 and FU02 strains coincided with a reassortment event and resulted in a new antigenic type (FU02) that became globally dominant and led to a major vaccine failure (Holmes et al. 2005). In short, reassortment allowed influenza A virus to place a fit HA segment in a compatible genomic background, thereby increasing fitness. Not to overly labour the point, but this example neatly illustrates why the evolutionary dynamics of the HA must be considered within the context of that occurring at the genomic scale.

The importance of documenting viral evolution at a genomic scale is also apparent when the changing patterns of genetic diversity in H1N1 and H3N2 viruses are
analysed through time. A detailed study of many hundreds of complete genome sequences sampled over an approximately 10-year period from the USA and New Zealand, and illustrative of the northern and southern hemispheres, respectively, revealed periodic reductions in genetic diversity, and sometimes involving all eight genome segments, set against a background of frequent reassortment (Rambaut et al. 2008) (Fig. 7.6). Consequently, reassortment appears to be the norm, rather than the exception, in the seasonal evolution of influenza A virus. The HA segment seemed to be especially prone to reassortment, events that were sometimes associated with antigenic cluster jumps, again suggesting that there is a major epistatic component to fitness. Finally, despite the seasonal crashes in genetic diversity—which were more dramatic in H3N2 than H1N1 for reasons that are still unclear—the reappearance of past viral lineages strongly suggested that genetic diversity is maintained in a global reservoir population. A combination of antigenic cartography and extensive phylogenetic analysis then revealed that the probable location of this global reservoir population was East and South-east Asia (Russell et al. 2008). Specifically, a large-scale transmission network exists in this region, where big and

![Fig. 7.6 Population genetic history of human influenza A virus. The figure shows the time to the most recent common ancestor (TMRCA) of each genomic segment for isolates of H3N2 circulating each season in New York State, USA. Values shown represent the mean and 95% highest posterior density (HPD) intervals for TMRCAs estimated across the trees sampled using a Bayesian MCMC method. The diagonal line goes through 1 January of each season, approximating the seasonal mid-point in the northern hemisphere. The timescale of major antigenic changes in the USA is also depicted (see Fig. 7.5). Adapted from Rambaut et al. (2008) with permission.](image-url)
well-mixed human populations combined with more annual influenza transmission allow natural selection to proceed with great efficiency, generating the antigenic variants that are then exported worldwide to ignite the influenza epidemics we see each winter. Influenza A virus therefore fits a source–sink epidemiological model at a global scale (see section 6.4), and it is this that explains why antigenic drift is important globally, yet not so at the level of individual populations in the northern and southern hemispheres (Fig. 6.8). Of more tangible benefit, recognition of the importance of genomic scale evolutionary processes, as well as the identification of the global source population, should assist in the surveillance of new antigenic variants and hence in vaccine design.

7.2 The emergence and evolution of HIV

No virus has generated as much interest from evolutionary biologists as HIV, the causative agent of AIDS. Not only has the evolutionary work on HIV provided critical insights into the origin and spread of this virus, but the vast amount of sequence data obtained, combined with rapid evolution, has meant that HIV has become an important testing ground for new methods of sequence analysis (section 3.3). It is even arguable that HIV ignited the current interest in emerging diseases that has shaped much of the research conducted on viral evolution, including that covered in this book. Lastly, the case of HIV illustrates beautifully many of the fundamental concepts in viral evolution, such as the respective roles of mutation, recombination, natural selection, and demographic history in shaping genetic diversity, and the factors that mediate successful cross-species transmission. As a consequence, HIV serves as a rich case study in viral emergence and evolution. However, because of the huge and familiar literature on this subject, I will necessarily restrict my comments to a few key issues that fit the general theme of this book, particularly its emergence and evolutionary dynamics at the intra- and inter-host levels.

7.2.1 A brief history of HIV/AIDS

Although the virus and disease had clearly been in existence for some time, the modern history of HIV/AIDS starts in 1981 when reports of rare opportunistic infections, such as pneumonia caused by the fungus Pneumocystis carinii, were recorded in the gay communities of several large US cites (Gottlieb et al. 1981). As well as suffering from unusual microbial infections, the individuals in question in fact possessed a severe immunodeficiency, such that the bodies’ immune system is unable to fight off many of the pathogens to which we are commonly exposed. Acquired immune deficiency syndrome (AIDS) was born.

Early epidemiological work established that as well as gay men, AIDS was also present in populations of injecting drug users and haemophiliacs. Such clustering provided a strong indication that the disease was caused by the transmission of
an infectious agent—such as a virus—and most likely one that was blood-borne. This prediction was confirmed dramatically in 1983 with the discovery of the causative agent—a retrovirus eventually christened the human immunodeficiency virus type 1 (HIV-1) (Barré-Sinoussi et al. 1983). Other significant milestones in the early period of AIDS research were: (i) the realization that rather than being restricted to specific risk groups in the industrialized world, the virus was in fact most commonly found in individuals from sub-Saharan Africa and predominantly transmitted by heterosexual intercourse; (ii) the discovery of a second ‘type’ of HIV with a rather different genome organization (HIV-2), although one restricted to persons of West African origin; (iii) the discovery of closely related viruses in a variety of African non-human primates, including sooty mangabeys and chimpanzees (Huet et al. 1990); (iv) the identification of the primary cellular receptor of HIV—CD4—although other chemokine co-receptors were indentified in the 1990s; and (v) the development of the first anti-retroviral drug to fight HIV infection—AZT—which, after initially promising results, in reality has little positive impact as a monotherapy.

Since its discovery, the burden of mortality, morbidity, as well as the linked demographic and economic costs, caused by HIV/AIDS has been depressingly immense. The UNAIDS organization estimates that 33.2 million people were living with HIV/AIDS at the end of 2007, some 22.5 million (≈68%) of whom reside in sub-Saharan Africa (UNAIDS 2007). The adult (age range 15–49) prevalence of HIV in this region reaches 40%, an increase from less than 1% in the early 1980s. Other geographic regions suffering a major burden of HIV are South-east Asia (4 million HIV carriers), Latin America (1.6 million), and Eastern Europe and the former Soviet Union (1.6 million), with the latter largely associated with injecting drug use. Overall, some 2.5 million people were newly infected with HIV in 2007, equating to approximately 7000 new infections each day, and resulting in 2.1 million AIDS deaths. Since its initial description, an estimated 25 million people have died of AIDS (www.avert.org/worldstats.htm).

Despite the surprise of its emergence, as well as its devastating effect on human populations, HIV is not unique. The virus has a number of relatives—the lentiviruses—that infect horses (equine infectious anaemia virus; EIAV), goats (caprine arthritis encephalitis virus; CAEV), sheep (visna virus), cattle (bovine immunodeficiency virus; BIV), and felids, including domestic cats (feline immunodeficiency virus; FIV). As will be discussed in more detail below, even more closely related viruses infect a wide range of non-human primates (simian immunodeficiency virus; SIV), and are central to understanding the origin of HIV. It is inevitable that a more expansive survey of mammalian species will uncover even more lentivirus infections, particularly given the recent discovery of endogenous copies (Katzourakis et al. 2007; Gifford et al. 2008). The wide diversity of mammals that carry these viruses, as well as the existence of endogenous copies without infectious relatives, not only suggests that they are an ancient viral family, but that there has been a regular birth and death of viral lineages.
7.2.2 The genetic diversity of HIV

Right from the earliest descriptions of genetic variation in HIV-1 it was clear that this virus was remarkably diverse, both within individual hosts (Hahn et al. 1986; Balfe et al. 1990; Holmes et al. 1992) and globally (Korber et al. 1995). As the worldwide sample of HIV-1 began to expand it became clear that viral genetic diversity could often be partitioned into discrete clusters, or clades, on phylogenetic trees, that were eventually christened ‘subtypes’. At the time of writing there are nine such subtypes of HIV-1 (denoted A–K, but excluding E and I), as well as a growing database of circulating recombinant forms (CRFs), representing inter-subtype recombinants, some of which are remarkably complex in that they incorporate genetic material from multiple subtypes. Some CRFs have reached relatively high frequencies, with a worrisome example provided by the BF recombinant that circulates widely in Latin America (Carr et al. 2001), and which appears to be spreading more rapidly than its parental subtypes (Aulicino et al. 2007). The frequency with which CRFs are observed clearly reflects how weak a cross-protective immune response is elicited by HIV infection, and highlights the potential for recombination to have a major influence on the genetic structure of HIV. Indeed, inter-subtype recombination is so pervasive in HIV that it is arguable that discrete subtypes do not exist at all. The subtypes (and CRFs) of HIV-1 are also notable for their differing geographical distributions: subtype B represents the form of the virus first observed in industrialized nations during the early 1980s and which still dominates in these regions to this day, whereas subtypes A, C, and D are more commonly found in sub-Saharan Africa, with subtype C rising dramatically in frequency, particularly in southern Africa (Fig. 7.7). The other subtypes are found at rather lower frequencies. Phylogenetically defined subtypes of viruses have also been identified in HIV-2, denoted ‘epidemic’ subtypes A and B and non-epidemic subtypes C–G, although all are usually restricted to West Africa (Lemey et al. 2003).

The identification of lentiviruses in a wide range of non-human primates, particularly chimpanzees (Huet et al. 1990; Santiago et al. 2002, 2003; Nerrienet et al. 2005; Keele et al. 2006), changed the evolutionary context of genetic variation in HIV-1. Specifically, the subtypes and CRFs of HIV-1 described above fall into a single branch on the HIV phylogeny, reflecting a single cross-species transmission from chimpanzees (Fig. 7.8). This cluster of viruses is denoted the M, or Main, group, and contains the vast majority of viruses assigned to HIV-1. Strikingly, two other clusters (groups) of HIV-1 isolates have been identified, although present at far lower frequencies: O, for Outlier, and N for New. That these groups are separated from the M group by SIVcpz from chimpanzees is powerful evidence not only that chimpanzees are the ultimate source for HIV-1, but that species jumps have occurred a number of times (Fig. 7.8; see below). Also of note is that the greatest phylogenetic diversity in HIV (i.e. HIV-2, the M, N, and O groups of HIV-1, and extensive diversity within the M group) is observed in central-west Africa, the most likely birth place for this virus.
Fig. 7.7 The phylogenetic relationships and global distribution of the subtypes and circulating recombinant forms (CRFs) of HIV-1. The phylogeny was estimating using 83 reference sequences of the pol gene (3108 nt) of HIV-1 taken from the Los Alamos database (www.hiv.lanl.gov/content/index). All branch lengths are drawn to a scale of nucleotide substitutions per site, and the tree is mid-point root for purposes of clarity only. Note that because of frequent recombination the subtype structure is no longer clear and different genes will produce different trees.
7.2 The emergence and evolution of HIV

Fig. 7.8 Phylogenetic relationships of the primate lentiviruses showing the cross-species transmission events that led to the emergence of HIV (and marked by the X symbol). P.t.t refers to Pan troglodytes troglodytes whereas P.t.s refers to Pan troglodytes schweinfurthii, both subspecies of common chimpanzee. The tree was estimated using the Bayesian method available in the MrBayes package (Ronquist and Huelsenbeck 2003), based on 116 amino acid reference sequences (1108 residues) of the pol gene taken from the Los Alamos database (www.hiv.lanl.gov/content/index). All horizontal branch lengths are drawn to a scale of amino acid substitutions per site, and the tree is mid-point-rooted for purposes of clarity only.
7.2.3 What and why are subtypes?

What evolutionary processes are responsible for the population genetic structure of HIV? In particular, could the types, subtypes, and CRFs of HIV-1 differ in fitness, perhaps manifest as differences in virulence (i.e. the time from initial infection to the development of full-blown AIDS), which then explains their differing distributions and prevalences? Before discussing these issues in a detail, it is important to clarify exactly how fitness is measured. For many viruses—and HIV is no exception—it is fairly straightforward to measure fitness in vitro through growth assay kinetics. In some cases it is even possible to perform a more powerful ‘competition assay’, with the strain growing to the highest titre obviously that of highest fitness. While these experiments undoubtedly capture some aspects of viral fitness, particularly the relative abilities of different viruses to infect and replicate in different cell types, they do not speak to the fitness of a virus in nature as there is no consideration of R at the epidemiological scale. In the case of HIV, and perhaps many other viruses as well, there is a fundamental division between fitness as measured in cell culture and fitness as measured through R. For example, a series of elegant in vitro experiments have demonstrated that subtype B viruses systematically outcompete subtype C viruses, perhaps due to differences in cell binding and entry, indicating that the former have higher ‘fitness’ in the cell types assayed (Ball et al. 2003; Marozsan et al. 2005). While there is no denying the power of these experiments, they cannot be easily translated to the epidemiological scale as subtype C viruses are now globally the most common of all HIV-1 strains and increasing in prevalence.

These complexities notwithstanding, there have been a variety of proposals that the subtypes of HIV-1 differ in fundamental properties that reflect their global prevalence, most notably transmissibility. Hence, subtype C viruses have greater epidemic potential than subtype B viruses. There are, however, a number of reasons to be cautious about such inferences. First, as noted above, it is often difficult to extrapolate from in vitro to natural systems, and HIV is no exception. Second, when functional assays are performed on a viral ‘subtype’ it is inevitably the case that only a handful of isolates are ever surveyed, making it difficult to draw general conclusions, particularly for a virus as variable as HIV. This raises a more generic issue: because viral isolates cluster in a phylogenetic tree does not mean that they are necessary blessed with identical phenotypic properties. Similarly, differences in phenotype are not an automatic consequence of the existence of viral subtypes. Next, the high rate of recombination evident in HIV means that any extrapolation from genotype to phenotype is thwart with uncertainly. Finally, and perhaps of most importance, the current evidence for clade-specific differences in viral fitness is highly debatable. In particular, although it has been claimed that subtype C is more sexually transmissible than other subtypes (Iversen et al. 2005; John-Stewart et al. 2005), and might be associated with lower virulence (Ariën et al. 2007), this has yet to be tested rigorously. As a warning shot, initial suggestions that subtype E (now merged into subtype A) was more readily sexually transmissible than other subtypes, and which may have explained its close
association with the explosive HIV epidemic in Thailand (Soto-Ramirez et al. 1996), have not withstood closer scrutiny.

If not fitness, what explains the subtype structure of the HIV-1 M group tree? The most likely explanation is a series of local founder effects (Rambaut et al. 2001). Specifically, viral lineages were by chance exported to other localities from a source population in the Congo region of Africa (Vidal et al. 2000). As these local outbreak strains continued to spread in their new populations they acquired those genetic differences (manifest as relatively long internal branches) that allowed their identification as specific subtypes (Fig. 7.9). Hence, if the subtypes differ fundamentally in phenotype, these traits were acquired in isolation, and not due to any selective pressure caused by inter-subtype competition. Evidence for this essentially ‘neutral’ model of epidemiological scale evolution is that when a tree is inferred using both the global subtypes of HIV and those viruses sampled from the Congo region of Africa, the distinct subtype structure breaks down (Fig. 7.9). As noted previously, frequent inter-subtype recombination will erode subtype structure even further.

7.2.4 The origins and spread of HIV

While some aspects of HIV research have made little progress, particularly the development of vaccines, the study of the origin and spread of HIV has proven remarkably successful. It would be fair to say that we now know where HIV comes from, with a plausible route of entry into human populations, as well as a rough timescale for these events. In the case of HIV-1 this means that the virus mostly likely emerged in the Congo region of central-west Africa during the first decades of the twentieth century and first entered human populations through exposure to contaminated bush meat from chimpanzees (Gao et al. 1999; Keele et al. 2006; Worobey et al. 2008). A similar picture can be painted for HIV-2, although the place of emergence is likely to be rather further west in Africa, and sooty mangabeys act as the reservoir species (Santiago et al. 2005). In both cases there also appears to have been multiple cross-species transmission events from non-human primates to humans.

As should be apparent from these statements, documenting the diversity of viruses that circulate in a wide variety of non-human primates is critical to understanding the origins of HIV. Although these are routinely referred to as the SIVs, that none seem to cause overt disease in the natural hosts means that the term immunodeficiency is something of a misnomer, so that the primate lentiviruses is a safer phrase. Indeed, SIV in its natural hosts is not associated with a decline in the number of CD4 T cells despite long-term infection and high levels of viraemia, and does not seem to generate an overly strong immune response (Broussard et al. 2001; Silvestri et al. 2003).

Primate lentiviruses are also remarkably abundant. At the time of writing at least 40 of these viruses associated with different primate species have been identified, largely within monkeys of the family Cercopithecidae and apes (chimpanzees, gorillas, and humans) of the family Hominidae (Hahn et al. 2000; Santiago et al. 2002; Keele et al. 2006; Van Heuverswyn et al. 2006). Crucially, these viruses are only
Fig. 7.9 The genesis of the subtype structure of HIV-1. (a) A phylogenetic tree of the V3–V5 region of the env gene of HIV-1 showing the different subtypes of HIV-1 (excluding CRFs). The lineages shown in black are from the Democratic Republic of Congo (DRC) and tend to fall in basal locations, suggesting that this population is ancestral. Tree kindly provided by Andrew Rambaut. (b) Analysis of the same tree using the subtype diversity ratio (SDR): the mean path length between tips of a specific subtype divided by the mean path length between tips of different subtypes. There is a far stronger subtype structure (low SDR) in the HIV-1 subtypes excluding the DRC data (Global = 0.33), compared to a tree of the Global and DRC data combined (Congo = 0.57). The latter SDR is also no different from that observed in simulated phylogenies experiencing exponential population growth with no subtype structure (black bars). Adapted from Rambaut et al. (2001).
found naturally in animals of African origin. Despite the evidence for the antiquity of the lentiviruses as a whole, this phylogenetic distribution strongly suggests that the current lineages of primate lentiviruses were acquired subsequent to the divergence between Old World and New World primates, and that there has been clear species jumping between those viruses that infect Old World monkeys and those that infect chimpanzees, gorillas, and humans (Fig. 7.8).

Despite these notable advances, determining the timescale of primate lentivirus evolution has proven more problematic. Initially, the observation that each species of primate seemed to carry its own unique lentivirus (such that they could be considered ‘species-specific’), as well as suggestions that the phylogeny of the viruses matched that of the hosts, argued for long-term co-divergence, perhaps on timescales of millions of years (Allan et al. 1991; Beer et al. 1999; Bibollet-Ruche et al. 2004). However, such an ancient history sits in stark conflict with the timescale of lentivirus evolution inferred from molecular clocks and which is measured in thousands of years at most (Sharp et al. 2000; Holmes 2003c). Clearly, these very shallow date estimates are incompatible with a history of co-divergence. In addition, there are a growing number of mismatches between phylogenies of host and virus, indicative of widespread cross-species transmission. For example, the four viruses found in great apes—SIVcpz in chimpanzees, SIVgor in gorillas, and HIV-1 and HIV-2 in humans—are all clearly examples of cross-species transmission, despite how closely these hosts and viruses are related. The origin of SIVcpz is particularly informative, as this virus is a complex multi-species recombinant, with different genomic regions having ancestry in SIVrcm from red-capped mangabeys (Cercocebus torquatus) and SIVgsn from greater spot-nosed monkeys (Cercopithecus nictitans) (Bailes et al. 2003). The explanation for such a complex evolutionary history appears to be that chimpanzees often butcher other primate species for food, a process that provides an obvious route for the virus to jump species boundaries.

The uncertainty over the timescale of lentivirus diversification raises one of the central paradoxes in all of viral evolution: how is it possible to reconcile the observation that viruses can infect a wide range of host species and often at high prevalence, which is suggestive of an ancient ancestry, with very recent divergence times as estimated under molecular clocks? Indeed, if retroviruses (and other RNA viruses) evolve rapidly, then their genome sequences should be unrecognizably divergent after millions of years of evolution, perhaps aside from a few conserved motifs (Holmes 2003c). Yet, while sequence alignment is undoubtedly difficult in some gene regions, the primate lentiviruses are clearly closely related. The simplest explanation is that the lentiviruses that infect cercopithecoid monkeys evolve many orders of magnitude more slowly than other RNA viruses, as proposed for the retrovirus SFV (Switzer et al. 2005). However, while rates of nonsynonymous substitution are indeed rather lower in SIVs than HIVs, mostly likely reflecting reduced immune selection pressure, overall substitution rates are similar across the full range of primate lentiviruses, with viruses like SIVsm also showing substantial intra-host genetic diversity (Demma et al. 2005). Another possibility is that the models of nucleotide substitution used to estimate genetic distances are so flawed that they hugely over-estimate evolutionary
rates on some lineages. While it is undoubtedly the case that these methods have room for improvement, particularly in their common assumption that each nucleotide evolves independently, it is difficult to envisage how an error of the magnitude required to reconcile the very different theories for the origin of primate lentiviruses is possible. For example, while the covarion substitution model (Fitch 1971; Huelsenbeck 2002) may constitute a better descriptor of sequence evolution than models that assume that all sites vary equally across lineages, an equivalent analysis of DENV revealed that it only has a relatively minor impact on estimated divergence times (Dunham and Holmes 2007). Similarly, although differing distributions of the shape parameter (α) of the gamma distribution of among-site rate variation can have a major impact on genetic distances (and phylogenetic accuracy) (Yang 1996), α would need to be unfeasibly low to greatly increase divergence times in the primate lentiviruses (Sharp et al. 2000). The most likely explanation for the recent common ancestry of the primate lentiviruses inferred from molecular clocks therefore rests with the general macroevolutionary model outlined in section 5.3: lentiviruses may have been associated with primates for millions of years but experience a continual process of extinction and reinvasion; that is, of lineage birth and death. The contemporary distribution of primate lentiviruses therefore reflects the inter-species spread of recent invasive viral lineages, where all older lineages have suffered extinction (Fig. 5.9).

7.2.5 The intra- and inter-host evolutionary dynamics of HIV

HIV was also the first virus where extensive studies of intra-host diversity and evolution were undertaken, and which have even contributed to theories of HIV pathogenesis (Nowak et al. 1991). The most basic observation here is that levels of genetic diversity are often extensive, comprising a turnover of genetic variants through time (Saag et al. 1988; Holmes et al. 1992; Shankarappa et al. 1999), a possible differentiation of virus into tissue-specific types, such as those sampled from blood, brain, and seminal fluid (Sanjuán et al. 2004a), and the generation of isolates with increased virulence (Fenyö et al. 1989). Patterns of genetic diversity also seem to change according to the time point within the infection cycle. Most notably, levels of genetic diversity are greatly reduced during primary infection (Zhang et al. 1993; Zhu et al. 1993), then generally increase as the infection proceeds (Shankarappa et al. 1999). While some of this initial reduction in genetic diversity is likely due to the population bottleneck that accompanies inter-host transmission, it is less clear what proportion of the genetic variation present in a donor is passed to a recipient at transmission, and whether particular viral variants are favoured by natural selection during the very early days of HIV infection. In the most extreme case, it has been proposed that the majority of HIV transmissions may have been initiated by a single infecting virus (Keele et al. 2008; Salazar-Gonzalez et al. 2008).

A major complicating factor in studying early HIV evolution is the long-standing confusion between ‘transmission’ and ‘primary infection’: just because a viral population is strongly homogeneous during primary infection does not necessarily mean that it was so at transmission some weeks earlier. In particular, it is possible that
a diversity of virus particles initiate infection in a new host and that the variant with the highest replicative fitness then outgrows to dominate at primary infection, leading to a substantial reduction in genetic diversity through a selective sweep. In addition, the bottlenecks associated with some forms of transmission (sexual), may be greater than in others (vertical) (Scarlatti 2004). Obviously, estimating genetic diversity at the precise moment of inter-host transmission is extremely difficult to achieve for natural systems, so that most studies of this process are necessarily indirect (Keele et al. 2008).

The detailed coalescent analysis of a rare case in which sequences were available from both the donor and recipient very close to the point of transmission revealed that over 99% of the genetic diversity in the env and gag genes was lost as the virus passed between hosts (Edwards et al. 2006b). Although this is clearly a substantial population bottleneck, that must have a major impact on evolutionary dynamics, it does not necessarily equate to the transmission of a single virus particle.

7.2.6 The great obsession moves to HIV

Even more controversial is determining what evolutionary processes shape the genetic diversity of HIV following primary infection. Indeed, the debate over whether the intra-host dynamics of HIV are dominated by stochastic (neutral) or deterministic (selected) processes has raged for more than 10 years. Crucially, if stochastic processes dominate HIV evolution, then there will be an inherent randomness in such phenomena as the evolution of drug resistance.

Some authors have suggested that values of d_N/d_S measured at the intra-host level indicate that HIV evolution is essentially a neutral process (Plikat et al. 1997; Shriner et al. 2004). While it is certainly possible that genetic drift can shape certain aspects of intra-host evolution, particularly during transmission bottlenecks or bottlenecks that follow the initiation of drug treatment, there is far more evidence to suggest that the intra-host evolution of HIV is dominated by natural selection, in both the purifying selection of deleterious mutants (Edwards et al. 2006a) and the positive selection of advantageous ones (Bonhoeffer et al. 1995; Nielsen and Yang 1998; Williamson 2003). In fact, it is arguable that the intra-host evolution of HIV-1 represents the most powerful force of positive selection recorded for an RNA virus, and perhaps for any organism. It is this capacity for strong natural selection that facilitates the rapid evolution of drug resistance, particularly during monotherapy (Kellam et al. 1994), and explains why HIV is readily able to evade aspects of the natural immune response, be it innate, T-cell (Price et al. 1997) or antibody-based (Wei et al. 2003). As such, much of the notion that intra-host evolution is dominated by essentially neutral processes seems to be due to the use of inappropriate analytical methods. In particular, pairwise d_N/d_S methods that average over nucleotide sites experiencing mixed positive and purifying selection are well known to underplay the importance of adaptive evolution (Crandall et al. 1999; Zanotto et al. 1999).

More contentious are suggestions that genetic drift dominates the intra-host evolutionary dynamics of HIV because effective population sizes are far lower than the census population sizes measured in counts of the numbers of infected cells (i.e. that there...
is less genetic diversity than expected in HIV given its population size; Leigh Brown 1997). Although population genetic estimates of intra-host N_e in HIV-1 are invariably low—in the range of 10^{-3} to 10^{-4}—and therefore very much smaller than the numbers of infected cells, which may fall in the range 10^7–10^8, these estimates were derived from methods that implicitly assume neutrality (see section 3.3). As a consequence, it is impossible to determine whether these low N_e values—which are better thought of as indicators of restricted genetic diversity—reflect truly stochastic processes, including local bottlenecks following tissue-specific subdivision (Frost et al. 2001), or continual selective sweeps. To my mind, the rapidity with which HIV responds to changing environments strongly suggests that ongoing natural selection is responsible for the reduced levels of intra-host genetic diversity, irrespective of population subdivision (Kouyos et al. 2006). This strongly selective process also in part explains why substitution rates are higher within than among hosts (Lemey et al. 2006). Likewise, the clear similarities in structure between the intra-host phylogenies of HIV-1 and the inter-host phylogenies of influenza A virus, both of which exhibit a distinctive ladder-like pattern, strongly argues for the efficient and continual action of natural selection (Grenfell et al. 2004) (Fig. 7.10). In these circumstances, any reported randomness in the evolution of drug resistance in HIV (Leigh Brown and Richman 1997; Nijhuis et al. 1998; Frost et al. 2000) may be due to epistatic interactions, of which little is known.

7.2.7 Epidemiological scale dynamics

While understanding the intra-host evolutionary dynamics of HIV is evidently of great importance, rather less is known about how what occurs within hosts relates to evolution at the epidemiological scale. Perhaps the most interesting question here is whether HIV is adapting to transmission in different human populations, particularly those that exhibit major differences in HLA haplotype. The most provocative idea is that CTL escape mutations that are beneficial within hosts are also favourably transmitted at the population level, leading to epidemiological scale adaptation (Moore et al. 2002; Trachtenberg et al. 2003). Given sufficient time, this process will result in genotypically and phenotypically distinct HIV lineages in human populations that differ in their dominant HLA types, a phenomenon that has recently been demonstrated (Kawashima et al. 2009). However, while it is possible that a proportion of those mutations that are favoured within hosts will also spread efficiently at the epidemiological scale (Edwards et al. 2005; Kosakovsky Pond et al. 2006), detailed analyses have revealed that many of the associations between HIV-1 and specific HLA types are due to shared common ancestry rather than to shared selection pressure (Bhattacharya et al. 2007).

There are also a variety of reasons why it is dangerous to extrapolate from the intra-host to the inter-host evolution of HIV. First, if there is a large-scale (neutral) population bottleneck at transmission, at least via some transmission routes (Edwards et al. 2006b), then this major stochastic event will inhibit the ability of natural selection to favour advantageous mutations in the long term. Similarly, at the epidemiological scale, natural selection works best in large, well-mixed populations.
7.2 The emergence and evolution of HIV

While this may be true of some transmission networks—the homosexual and injecting drug-user populations of the late 1970s and early 1980s, and parts of sub-Saharan Africa today—it is unlikely to apply to HIV across its entire geographic range. Indeed, sexual networks of HIV are characterized by enormous variation in rates.

Fig. 7.10 Intra-host phylogenetic tree of HIV-1. Maximum likelihood tree of env gene sequences from ‘patient 2’ of the Shankarappa et al. (1999) data set. To show the strength of temporal structuring in this phylogeny, the time of sampling post-infection (p.i.) is shown for a number of arbitrarily chosen groups of sequences. The resemblance to the inter-host tree of the HA1 domain of human influenza A virus is striking (see Fig. 7.3a). All horizontal branches are drawn to a scale of nucleotide substitutions per site, and the tree is rooted on the sequences closest to the point of infection.
of partner exchange, with some ‘superspreaders’ having extremely high numbers of sexual partners and therefore contributing their virus at a disproportionately high frequency to subsequent generations. Such strong heterogeneities in HIV transmission mean that natural selection cannot act with optimal efficiency, as it is possible that a high-fitness variant with emerge in a low-contact network, thereby inhibiting its spread. In short, the global population dynamics of HIV most assuredly do not fit a Wright–Fisher model.

There are two more particular reasons with CTL escape mutations are not guaranteed onward transmission success. The first is that many people may transmit the virus before they develop a CTL escape (or other beneficial) mutation. In these circumstances, any intra-host evolution that occurs after the point of inter-host transmission will have no impact on epidemic-scale processes. There are two lines of evidence that this effect is likely to be of importance: that many HIV transmissions occur rapidly following initial infection, and particularly in ‘standing networks’ where rates of sexual partner or needle exchange, as well as viral loads, are very high (Jacquez et al. 1994), and that at least some CTL escape mutations can take many years to develop, in part because these mutations have negative effects on other aspects of viral fitness (Kelleher et al. 2001; section 3.3).

The second factor that will inhibit the spread of CTL escape mutations at the population level is that a mutation that is beneficial in an individual with a specific HLA type may be deleterious in another individual with a different HLA type, in which case a reversion mutation may be favoured (Friedrich et al. 2004a; Leslie et al. 2004; Herbeck et al. 2006; Li et al. 2007; Matthews et al. 2008). Such reversions may also reduce the rate of nucleotide substitution at the inter- compared to the intra-host level (Maljkovic Berry et al. 2007). In general, there are four potential fates that await the new CTL escape mutation at the population level: (i) it may be advantageous in all the hosts it enters, which will clearly enhance its spread; (ii) it may be advantageous in hosts with the ‘correct’ HLA type, but neutral in different HLA backgrounds (Edwards et al. 2005); (iii) it may be advantageous in hosts with the correct HLA type, but deleterious in the wrong genetic background, in which case the escape mutation will revert frequently, perhaps resulting in lower virulence in the new host (Chopera et al. 2008); and (iv) different HLA types favour different CTL escape mutations at specific nucleotide sites, in which case these positions will exhibit complex patterns of genetic variation. Together, these processes make the inter-host evolution more complex than predicted in simple deterministic models. Indeed, it is striking that the phylogenies of HIV inferred at the global population level are so different from those observed within hosts (Grenfell et al. 2004; Holmes 2004), and reflect large-scale, and hence often neutral, epidemiological processes (Lemey et al. 2006).

7.3 The evolution of dengue virus

One of the most interesting generalities stemming from research on emerging RNA viruses is that although many spill-over infections are caused by viruses that are
transmitted by arthropod vectors (usually mosquitoes), few ever establish sustained transmission networks in humans, indicative of major selective constraints (Woelk and Holmes 2002). As such, exceptions to this pattern—those arboviruses that have successfully established endemic transmission cycles in humans—are of special importance. Of the viruses in this category, it is DENV that merits most attention. DENV is currently the most common arbovirus infection of humans, responsible for perhaps 50 million dengue fever infections in over 100 countries throughout the tropical and sub-tropical world (Gubler 2002; Pan American Health Organization 2002) and some 500,000 hospitalizations (90% of whom are children), although with a relatively low case fatality rate, such that approximately 25,000 dengue deaths are recorded annually (see www.who.int/tdr).

In a minority of cases infection with DENV results in far more serious disease syndromes involving vascular leakage, usually referred to as dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS), the latter of which is characterized by hypotension and circulatory failure. Severe dengue disease may result in case fatality rates as high as 5% depending on the availability of appropriate clinical management (Gibbons and Vaughn 2002). The first well-documented outbreak of DHF/DSS occurred in Manila during 1953/1954, and was followed by a larger outbreak in Bangkok in 1958 (Halstead 1980). Since this time, DHF/DSS has become endemic in all countries in South-east Asia, where it represents a major paediatric infection and an archetypal emerging disease. Given the increasing size and mobility of the human population, as well as the current lack of an effective vaccine, dengue will doubtless continue to be an important public health problem for the foreseeable future. Global warming, and its knock-on effect on mosquito dispersal, may eventually result in an even wider distribution (Jetten and Focks 1997).

DENV is a member of the genus Flavivirus (family Flaviviridae) that is transmitted by Aedes spp. mosquitoes. It is organized as four serotypes—DENV-1 to DENV-4—that are so phylogenetically distinct (diverging at ≈30% across their polyprotein) that some have argued that they should be classified as different viruses. DENV is also relatively closely related to a number of other important viral (and emerging) infections of humans, notably Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBE), West Nile virus (WNV), and yellow fever virus (YFV), the latter of which will be discussed shortly. As an interesting historical digression, it is worth noting the role played by Benjamin Rush, physician and signatory of the US Declaration of Independence, in the epidemiology of both DENV and YFV. Rush coined the famous term ‘break-bone’ fever for dengue infection and produced one of the first and clearest descriptions of epidemic yellow fever, that which occurred in 1793 in Philadelphia and killed some 5000 people. DENV and YFV are also similar in that both viruses exist in an urban (epidemic) cycle, involving human-to-human transmission and anthropophilic Aedes mosquitoes, and a sylvatic cycle involving non-human primates, and possibly other mammals (de Thoisy et al. 2004), and sylvatic species of mosquito (such as Aedes furcifer, Aedes luteocephalus, and Aedes taylori) (Rudnick 1978; Barrett and Higgs 2007) (Fig. 7.11).
7 Case studies in evolution and emergence

7.3.1 The origins of DENV

Despite the great interest in DENV, revealing its origins has proven problematic. Perhaps the only strong conclusion that can be drawn at present is that DENV is very unlikely to have originated in the New World as the first recorded disease outbreaks on this continent coincide with the slave trade, in which infected hosts and/or vectors were imported into the Americas for the first time. Consequently, it must be that DENV has its origins in the jungles of either Africa or Asia. However, choosing among these regions has proven difficult. Tentative evidence for an African origin is that (i) the *Aedes* mosquitoes that transmit DENV are themselves of African origin, (ii) early outbreaks of dengue in the Americas are directly related to the slave trade from Africa, and that (iii) people of African origin are seemingly less susceptible to serious dengue disease. However, all these points are debatable at best. In particular, given that DENV evolution is measured on a timescale of a few thousand years (and with a substitution rate that is fairly typical of RNA viruses; Twiddy *et al.* 2003), whereas that of *Aedes* mosquitoes is a good deal longer, the evolutionary history of virus and vector are clearly uncoupled. In addition, although there is strong circumstantial evidence that the global spread of dengue can at least in part be associated with the slave trade from Africa, early outbreaks of DENV were reported in other localities most notably Batavia (now Jakarta, Indonesia). Consequently, it is likely that many aspects of the increased mobility and size of human populations which occurred at this time, with slavery one ugly manifestation, were responsible for the global dissemination of DENV (Zanotto *et al.* 1996b). Further, there is some evidence that DENV might have an Asian origin. In particular, currently the highest prevalence of DENV is found in South-east Asia, and sylvatic strains of DENV isolated from species of Asian primate fall at divergent positions on phylogenetic

Fig. 7.11 The transmission cycle of dengue (DENV) and yellow fever (YFV) viruses, both of which involve sylvatic (enzoetic) and human (epidemic) components. Crucially, while the link to the sylvatic cycle is critical to the emergence of YFV in humans, DENV has effectively broken free of sylvatic transmission, although some spill-back from humans to non-human primates occurs (reflected in the direction and strength of the arrows). Also, it is important to note that while monkeys are likely to be the major sylvatic host for both DENV and YFV, other mammalian species may also play a role in the sylvatic transmission of these viruses.
7.3 The evolution of dengue virus

The evolution of dengue virus is marked by a long history of co-evolution with its natural hosts, which are non-human primates. This is evident from the genetic sequences of the viruses, which suggest that they have been resident in these species for extended time periods (Wang et al. 2000; Wolfe et al. 2001).

The mention of sylvatic dengue also raises one of the most puzzling aspects of its evolution: that sylvatic strains are found in monkeys of both African and Asian origin and that the divergence between these viruses most likely occurs on a timescale of only hundreds of years (Vasilakis et al. 2007a) (Fig. 7.12). Indeed, estimates for the time to the most recent common ancestor (TMRCA) of the four serotypes are usually no more than 2000 years (Twiddy et al. 2003; Dunham and Holmes 2007). As monkeys are unable to move large (trans-continental) distances themselves, how can the link between the African and Asian monkeys be explained? At face value there seem to be two possibilities, both of which raise interesting questions about the nature of viral evolution. One explanation is that sylvatic DENVs have been

![Fig. 7.12 Phylogeny of 150 complete genomes (coding region, 10185 nt) of all four serotypes of DENV, including those sylvatic viruses only found in non-human primates and which are shaded in grey. The branches on which cross-species transmission events from monkeys to humans have occurred are marked with an X symbol. Although complete genomes of clearly sylvatic viruses are currently only available for DENV-2 and DENV-4, it is highly likely that all four serotypes have sylvatic origins. The times to the most recent common ancestor (TMRCA) (and 95% highest posterior density (HPD) values) for the serotypes are also shown. The phylogeny depicted is the maximum clade credibility tree with a scale given in years and tip times corresponding to sampling times. The tree was estimated using a strict molecular clock model under a Bayesian skyline coalescent prior with the BEAST package (Drummond and Rambaut 2007). More details are available from the author on request.

trees, suggesting that they have been resident in these species for extend time periods (Wang et al. 2000; Wolfe et al. 2001).

The mention of sylvatic dengue also raises one of the most puzzling aspects of its evolution: that sylvatic strains are found in monkeys of both African and Asian origin and that the divergence between these viruses most likely occurs on a timescale of only hundreds of years (Vasilakis et al. 2007a) (Fig. 7.12). Indeed, estimates for the time to the most recent common ancestor (TMRCA) of the four serotypes are usually no more than 2000 years (Twiddy et al. 2003; Dunham and Holmes 2007). As monkeys are unable to move large (trans-continental) distances themselves, how can the link between the African and Asian monkeys be explained? At face value there seem to be two possibilities, both of which raise interesting questions about the nature of viral evolution. One explanation is that sylvatic DENVs have been
associated with these species since they shared a common ancestor several million years ago. However, this would require a profound slow-down in the tick of the viral molecular clock. Indeed, the genetic diversity within the sylvatic stains of DENV-2 is no greater than that observed with the human viruses, which is clearly measured in timescales of hundreds of years (Holmes and Twiddy 2003; Vasilakis et al. 2007a). The second possibility, more viable by default, is that humans have transmitted the virus to monkey species living on different continents, through the direct movement of infected humans, vectors, or monkeys. In support of this theory are observations of viral infections at high prevalence in Asian temple monkeys that are in regular contact with humans, and which represent ‘reverse spill-overs’ (Jones-Engel et al. 2006). Further, the timescale of sylvatic DENV evolution concurs with the beginning of global trade in humans (Vasilakis et al. 2007a), which would have also allowed widespread dissemination. Humans may therefore act more regularly as a vector for the transfer of viral infections to other species than previously anticipated (section 6.2).

7.3.2 DENV biodiversity

Typically for an RNA virus, extensive genetic diversity is present within each of the four DENV serotypes. For ease of representation this diversity is often partitioned into phylogenetically discrete clusters of sequences termed genotypes (‘subtype’ has been used interchangeably), although it is likely that some of these also differ in antigenicity (Holmes and Twiddy 2003). As with all RNA viruses, there is an arbitrary component to genotypic classifications, and a number of different schemes have been proposed. Depending on the scheme, between three and six such genotypes are described within each serotype, with both DENV-2 and DENV-4 containing genotypes that are currently only observed in non-human primates (Figs. 7.12 and 7.13). It is highly likely that more extensive sampling will reveal additional genotypes, and that other genotypes will disappear as ‘gaps’ in the phylogenetic tree are filled in. These genotypes most likely represent the outcomes of independent evolution following geographical isolation, rather than a selectively driven process. This being said, there have been claims that the genotypes, or clades within genotypes, of DENV do differ in aspects of phenotype, most notably virulence (see below).

Aside from their phylogenetic distinctiveness, the other obvious feature of the genotypes is their differing spatial distributions, with some more widespread than others (Fig. 7.13). This is best documented in DENV-2 where two genotypes are seemingly restricted to South-east Asia, and a third to the Americas. In contrast, a ‘cosmopolitan’ genotype has a far wider geographical distribution, encompassing almost the full spatial range over which dengue is observed (Twiddy et al. 2002). However, far more extensive epidemiological and genomic surveys will be required to determine whether the widespread distribution of some genotypes is due to enhanced fitness, such that the virus in question has more epidemic potential, or merely chance exportation. Other general conclusions that can be drawn from the phylogenetic analysis of genotype diversity are: (i) that genotypes frequently co-circulate within
Fig. 7.13 The global distribution of the serotypes and genotype of human DENV. Genotypes are abbreviated as follows: DENV-1 = genotype I (I), genotype II (II), genotype III (III); DENV-2 = American (Am), American/Asian (Am/As), Asian I (As I), Asian II (As II), Cosmopolitan (Cos); DENV-3 = genotype I (I), genotype II (II), genotype III (III), genotype IV (IV); DENV-4 = genotype I (I), genotype II (II), genotype III (III).
the same locality, and particularly in parts of South-east Asia; (ii) that there is a possible distinction between ‘endemic’ genotypes that have circulated within particular localities for extended time periods, and ‘epidemic’ genotypes that seem to spread rapidly through populations, with the microevolution of DENV-1 in Pacific islands (endemic) compared to mainland South-east Asia (epidemic) an important example (A-Nuegoonpipat et al. 2004); (iii) that there is a partial phylogeographic division between what be regarded as ‘northern’ (China, Myanmar, Taiwan, Thailand, Vietnam) and ‘southern’ (East Timor, Indonesia, Malaysia, The Philippines, Singapore) South-east Asia; (iv) that despite this division, South-east Asia in general harbours the greatest degree of genetic diversity, suggesting that it has traditionally acted as a global source population, generating strains that then ignite epidemics elsewhere (although there now appears to be endemic transmission in other localities, including the Americas); and (v) that there is a relatively high rate of clade (including genotype) replacement, so that there is a clear birth and death of viral lineages through time (Sittisombut et al. 1997; Wittke et al. 2002; Klungthong et al. 2004; Thu et al. 2004). This process is particularly important for understanding the evolutionary dynamics of DENV and is discussed in more detail below.

Of more clinical relevance are suggestions that the genotypes of DENV also differ in virulence, which in this case can be defined as an enhanced capacity to cause DHF/DSS either in isolation or in the context of a complex immunological reaction termed antibody-dependent enhancement (ADE) (Rico-Hesse et al. 1997). Although still a subject of considerable debate, there is growing evidence that DENV genotypes do indeed differ in virulence. This is most famously documented in the case of DENV-2, where an ‘American’ genotype has seemingly been displaced from its home range in Latin America by a DENV-2 genotype from South-east Asia, the latter of which is also associated with far higher levels of severe dengue disease (Rico-Hesse et al. 1997; Rico-Hesse 2003). Similarly, the introduction of genotype III DENV-3 into Sri Lanka in 1989 was associated with the appearance of DHF/DSS in this country (Messer et al. 2002, 2003).

7.3.3 Lineage birth-death in DENV

The spread of DENV-2 in Latin America and DENV-3 in Sri Lanka illustrate what has been dubbed ‘clade replacement’: viral lineages appear, circulate for a period of time, and then die out, usually to be replaced by another lineage, and occasionally resulting in a change of virulence (Sittisombut et al. 1997; Wittke et al. 2002; Bennett et al. 2003; Klungthong et al. 2004). A striking, and more localized, example of this process took place in Bangkok, Thailand, involving two clades of viruses assigned to genotype I of DENV-1, and correspondent with a decline in the overall prevalence of DENV-1 and the rise of DENV-4 in this population (Zhang et al. 2005). Such major changes in genetic space can be explained by either (i) random population bottlenecks, for example caused by large-scale declines in mosquito numbers during the annual dry season, so that clade-replacement events are driven by neutral epidemiological processes or (ii) because clades differ in fitness so that one is able...
7.3 The evolution of dengue virus

outcompete another, perhaps by generating higher viral loads which in turn results in greater transmissibility.

Although stochastic processes are likely to play some role in determining the phylogenetic structure of DENV populations, particularly given seasonal fluctuations in vector abundance, which themselves track changes in temperature and precipitation (Hay et al. 2000), there is growing evidence that natural selection also plays a major role in determining the dynamics of lineage turnover. For example, that the major clade-replacement event in DENV-1 genotype I in Thailand involved viruses circulating in the same population—a children’s hospital in Bangkok—and occurred gradually, so that both clades co-circulated for a number of years, strongly suggests that it was selectively mediated (Zhang et al. 2005).

7.3.4 DENV fitness

More difficult is determining exactly how these viruses differ in fitness, and particularly whether these fitness differences relate to virulence. Two general hypotheses have been put forward (Rico-Hesse 2007). The first is that viruses with enhanced virulence produce higher (and perhaps longer) viraemia than viruses of low virulence, which in turn increases their probability of mosquito transmission (Leitmeyer et al. 1999). Natural selection by this mechanism was proposed as the explanation for the displacement of American by South-east Asian DENV-2 viruses (Cologna et al. 2005). In support of this hypothesis were observations that South-east Asian viruses produced consistently higher virus titres in human dendritic cells (Cologna and Rico-Hesse 2003), and were better able to infect and disseminate in Aedes aegypti mosquitoes (Armstrong and Rico-Hesse 2001), than American genotype viruses. Importantly, this implies that there is a direct link between viral titre, transmissibility, fitness, and virulence. In the case of DENV-3 from Sri Lanka, although the indigenous and invading viruses infected a similar proportion of mosquitoes, the latter replicated to higher levels in mosquitoes and disseminated to the head tissue more readily (Hanley et al. 2008). Pinpointing exactly which viral mutations are responsible for these differences in fitness has proven more problematic. For example, suggestions that variation in the RNA secondary structure of the 3′ UTR were in part responsible for the differing disease associations among American and Asian DENV-2 viruses (Leitmeyer et al. 1999) have yet to be verified (Shurtleff et al. 2001; Zhou et al. 2006).

The second hypothesis posits that high-virulence (i.e. fitter) DENVs are better able to avoid neutralization by cross-reactive antibodies present in semi-immune hosts (Kochel et al. 2002, 2005; Bennett et al. 2003). Hence, the selection pressures acting on DENV are strongly immune-mediated, such that the fitness differences between lineages are only manifest given a certain immunological landscape. Specifically, amino acid replacements that are neutral in one immunological landscape—manifest as a particular frequency of the four serotypes—are subject to natural selection when this immunological landscape is altered and the four serotypes change their frequency. This change in fitness occurs because the extent of immunological
cross-protection—herd immunity—will change along with the dominant serotype, so that mutations that are cross-protective against one serotype are not so against another. This process will result in a complex relationship between genetic and antigenic evolution (Fig. 7.14). Evidence for such complex immune-mediated selection is apparent in DENV-1 from Bangkok: the two clades in question differentiated at a time when this was the dominant serotype, so that the extent of cross-protection against the remaining three serotypes in the population was minimal. The clade replacement event occurred as DENV-1 began to decline in frequency and DENV-4 took over as the dominant serotype, such that one clade was better able to evade cross-protective antibodies generated to DENV-4 than the other (Zhang et al. 2005). In support of this idea, detailed analyses of monthly incidence data from a 20-year period in Bangkok also revealed the DENV-1 and DENV-4 serotypes to be out of phase, with the former dominating when the latter is rare, and vice versa (Nisalak et al. 2003; Adams et al. 2006; Wearing and Rohani 2006).

A similar process of immune-mediated selection occurs in emergent as well as endemic populations. As a case in point, DENV-4 exhibited more rapid rates of population growth in Caribbean populations than DENV-2 after both were imported into this region from South-east Asia (Carrington et al. 2005). The slower epidemiological dynamics of DENV-2 can be attributed to the fact that this serotype had previously spread through the Caribbean, so that some of the host population already carried immunity to it, while DENV-4 represented a virgin soil outbreak, allowing it to spread rapidly through an immunologically naïve population. Hence, the fitness of particular lineages of DENV is determined by what serotypes circulate (and have circulated) in the population and their frequency, and as these serotype distributions change, and the immunological interactions among them are altered, so the fitness of the component viral lineages also changes. Critically, simple laboratory assays of viral fitness will miss this essential epidemiological-scale dynamic.

7.3.5 Comparing dengue and yellow fever

Although it is tempting to consider dengue in isolation, much can be gained by comparing its evolution with that of YFV, to which it shares a number of important features: a close phylogenetic relationship, a transmission cycle that involves primates and various species of *Aedes* mosquitoes, and an epidemiological history that is closely linked to the slave trade (Zanotto et al. 1996b; Bryant et al. 2007) (Fig. 7.11). However, despite these similarities, YFV and DENV display a number of very important differences that shed light on their emergence and evolution. Most significantly, YFV can still be considered a disease of non-human primates (that is, a sylvatic disease), causing only sporadic outbreaks in humans, which are often little more than spill-over hosts. For example, in 2000–2005 fewer than 5000 cases of human yellow fever were reported in African and South America, although these numbers are likely to be large underestimates (Barrett and Higgs 2007). In addition, YFV has only a single serotype, compared to the four that characterize DENV, and is notoriously absent Asia (and countries of the Pacific), even though both the hosts and
7.3 The evolution of dengue virus

- DENV-1
 - Genotype I
 - Genotype III
 - Clade 2: 1990–2002

- DENV-2
 - Genotype 1
 - Genotype 4
 - 1974-2001
 - 1982-1990

- DENV-3
 - Genotype I
 - Genotype III

- DENV-4
 - Genotype I
 - Genotype II
 - Genotype III
 - 1997–2001

Fig. 7.14 The complex relationship between antigenic and genetic evolution in DENV. (a) Monthly number of cases (smoothed and adjusted for seasonality) of all four DENV serotypes recorded at the Queen Sirikit National Institute of Child Health in Bangkok, Thailand, between 1980 and 2000. DENV-4 (black line) is clearly out of phase with the other three serotypes. (b) Phylogenetic trees of all four DENV serotypes (E gene) sampled between 1973 and 2001 in Bangkok. The major phylogenetic events that coincide with changes in serotype abundance (a) are marked by arrows. The extinction of DENV-1 clade 1 (genotype 1) corresponding with the rise of DENV-4 in the early 1990s is particularly notable. Adapted from Adams et al. (2006) with permission.
vectors are present in this region (see below). Finally YFV is far more virulent than DENV, with reported case fatality rates of 25% in Africa.

Given these differences, the most obvious question to address with respect to YFV is why it has not evolved to be an endemic human pathogen? There are a number of possible explanations. It is possible that DENV is somehow intrinsically better adapted to replicate in human cells than YFV and therefore better able to spread through human populations. This enhanced replication ability results in a higher and/or longer viraemia and so increases the probability of transmission. Indeed, experimental studies have shown that isolates of sylvatic DENV have little trouble in replicating in human cell types, suggesting that jumping species boundaries in this case was not a major adaptive challenge (Vasilakis et al. 2007b). It is also striking that DENV has been able to successfully cross the species barrier from monkeys to humans on at least four occasions. However, this does not explain why YFV is able to cause very major epidemics when the ecological conditions (i.e. density of mosquitoes and hosts) are favourable. As an example, the Philadelphia yellow fever epidemic of 1793 resulted in 17000 cases and 5000 deaths, some 10% of the total population (a case fatality rate of ≈30%). This suggests that YFV does possess the requisite mutations that allow it to spread efficiently in humans given the right epidemiological conditions. In addition, an increase in the level of viraemia is normally expected to lead to an increase in disease severity in humans, as there is a strong association between viral load and morbidity (Vaughn et al. 2000). However, DENV is demonstrably less virulent than YFV, contrary to this prediction.

The major difference in virulence between DENV and YFV may provide an important clue to their differing epidemiological profiles. Specifically, as DENV is less virulent than YFV it requires a smaller critical community size (CCS) to sustain its transmission. Historically, the high virulence of YFV meant that it would quickly burn through human populations, killing hosts before the pool of susceptibles could be replenished. Under these circumstances the virus could not, and still will not, be able to spread efficiently unless it encounters very large human populations, such as those that would have characterized the cities where the symptoms of yellow fever were so famously described. In contrast, DENV, which is characterized by a far lower virulence and where many infections may be asymptomatic, is able to spread through far smaller human populations. It is therefore no surprise that the rise of both viruses is closely tied to the rise of urbanization and the slave trade, both of which would have greatly increased the number of susceptible hosts (Chapter 6).

7.3.6 Why no yellow fever in Asia?

A second interesting puzzle relating to YFV, and one that is intrigued virologists for decades, is why the virus has not spread in Asia, even though the requisite hosts (primates) and vectors are in place. Although Asian strains of Ae. aegypti are less competent at transmitting YFV that American strains (Barrett and Higgs 2007), that some transmission does occur indicates that this is not absolute barrier. A rather more compelling (although untested) hypothesis is that YFV has been prevented from
gaining a foothold in Asia because of an ‘immunological barrier’, reflecting strong cross-immunity exerted by another flavivirus that is already at high prevalence in this region. This is analogous to the complex interactions between the four serotypes of DENV. Indeed, as the DENV serotypes are as divergent as many different ‘species’ of flavivirus, it is possible that their immunological interactions, and particularly cross-protection, extend over wider phylogenetic distances, influencing the distribution of other flaviviruses. Hence, DENV is an obvious candidate for a virus that prevents the establishment of YFV, particularly as it may have originated in South-east Asia and is at very high prevalence in this region. However, other flaviviruses that are more closely related to YFV also exist in South-east Asia, including sepik and wesselsbron, while JEV is also highly prevalent. It is also possible that the cross-immunity is caused by another, as yet undescribed, flavivirus, of which there may be many (Pybus et al. 2002). More generally, it is possible that such immunological barriers—reflecting complex patterns of cross-immunity among viruses that are so closely related that they share epitopes (Crill and Chang 2004)—are a major factor shaping the spatial distributions occupied by RNA viruses, and may even lead to viral ‘speciation’ (section 5.3). Revealing the large-scale interactions among RNA viruses should clearly be a major component of the molecular epidemiology of the future.

7.4 The phylogeography and evolution of rabies virus

Before the emergence of HIV/AIDS, rabies was considered one of the most frightening of human diseases. Without vaccination—which thankfully can occur following exposure—the case fatality rate of rabies infection in humans is close to 100%, with few people ever reported as having recovered after the onset of symptoms. Those who do recover often experience permanent neurological damage. Rabies is also one of the most historically important human infections. The symptoms of rabies, which are gruesomely diagnostic, may have been reported in parts of the Old World before 2300 BC (Steele and Fernandez 1991). Louis Pasteur famously developed an effective vaccine to the virus in 1885, an event considered a major breakthrough in medical science. Today, and despite the effectiveness of vaccination, rabies is still responsible for more than 50,000 deaths globally on an annual basis, most of them in Asia.

Despite the burden of human morbidity and mortality due to rabies, it should not be classed as an endemic human infection. Rather, rabies is a wildlife disease, circulating in a variety of mammalian species, notably dogs, bats, foxes, raccoons, skunks, jackals, etc., which occasionally spill over to infect other species, including humans. Globally, the most common host is the dog, giving rise to what is called ‘street rabies’ in some parts of the world. The interest in rabies from an evolutionary perspective is that it provides a unique window into the process of viral emergence, as the virus has jumped host species boundaries on a fairly regular basis, and because it exhibits interesting spatial dynamics, particularly the occurrence of transmission waves. To put it another way, the spatial and temporal dynamics of RABV occur on
approximately the same scale, so that it represents a powerful case study in viral phylogeography. It is the spatial dynamics of rabies on which I focus here.

7.4.1 The world of lyssaviruses

RABV represents one genotype (genotype 1) of the genus *Lyssavirus*, a group of ssRNA− viruses of the family *Rhabdoviridae* whose name derives from the Greek *rhabdos*, for ‘rod’, a reference to their distinctive rod- (or bullet-) shaped virion. The rhabdoviruses are particularly interesting for the diversity of host species they infect, including mammals (such as RABV and VSV), fish (such as viral haemorrhagic septicaemia virus), and even plants (including rice yellow stunt virus). The ability to infect both animals and plants is a relatively rare trait among RNA viruses. Further, the rhabdoviruses can be both vector-borne or transmitted by other routes, such as infected saliva in the case of RABV (Bourhy *et al.* 2005).

As well as the ‘classical’ RABVs of genotype 1, other genotypes of lyssaviruses are: Lagos bat virus (LBV; genotype 2); Mokola virus (MOKV; genotype 3); Duvenhage virus (DUVV; genotype 4); European bat lyssavirus type 1 (EBLV-1; genotype 5); European bat lyssavirus type 2 (EBLV-2; genotype 6); and Australian bat lyssavirus (ABLV; genotype 7) (Fig. 7.15). More recently, it has been proposed that LBV should in fact be divided into two distinct genotypes (Delmas *et al.* 2008), and that four putative new genotypes infect bats in Asia (Arai *et al.* 2003). It is therefore highly likely that more intensive sampling will reveal additional lyssaviruses.

All lyssavirus genotypes except MOKV (where the host species are unknown but may involve terrestrial mammals) have bat reservoirs, strongly suggesting that lyssaviruses originated in these mammals, with occasional jumps to other species. This is also true of RABV individually, where there is a major phylogenetic split between those isolates that circulate in bats, and those that infect terrestrial mammals, suggesting that there was a single jump from bats to other mammals (see below; Badrane and Tordo 2001). Also of note in this context is that, to date, the only lyssaviruses found in any host species in the Americas are those assigned to genotype 1. This observation, combined with molecular clock estimates of the timescale of RABV evolution, suggests that RABV may have initially entered the Americas in the post-Columbian period.

There have been a variety of analyses of the global genetic diversity of RABV although, to date, none have considered complete genomes. A variety of important generalities can be drawn from these analyses. First, as noted above, there is a fundamental division between those RABV viruses that circulate in bats and those whose hosts are terrestrial mammals. Second, within the RABV that circulate in terrestrial mammals a number of distinct clades can be described (again with a strong arbitrary component and idiosyncratic nomenclature): (i) Africa 2, (ii) Africa 3, (iii) Arctic-related, (iv) Asian, (v) cosmopolitan, and (vi) Indian subcontinent, with a seventh genotype circulating exclusively in bats (Bourhy *et al.* 2008) (Fig. 7.16). As in the case of DENV, these genotypes have different geographical distributions, including the presence of some relatively cosmopolitan clades, although there is no
7.4 Phylogeography of rabies virus

RABV
(genotype 1)
Global; bats, terrestrial mammals

ABLV
(genotype 7)
Australia; fruit bats

LBV
(genotype 2)
Africa; bats

DUVV
(genotype 4)
Africa; bats

MOKV
(genotype 3)
Africa; terrestrial mammals?

IRKV
Asia; bats

ARAV
Asia; bats

KHUV
Asia; bats

EBLV-1
(genotype 5)
Europe; bats

EBLV-2
(genotype 6)
Europe; bats

Fig. 7.15 Phylogeny of the lyssaviruses. This maximum likelihood tree (PAUP*; Swofford 2003) was inferred using complete genome sequences with ambiguous regions of alignment removed (total of 10914 nt). More details are available from the author on request. Seven lyssavirus genotypes have been described to date: RABV (rabies virus), LBV (Lagos bat virus), MOKV (Mokola virus), DUVV (Duvenhage virus), EBLV-1 (European bat lyssavirus type 1), EBLV-2 (European bat lyssavirus type 2), and ABLV (Australian bat lyssavirus). In addition, four new genotypes have been proposed: ARAV (Aravan virus), IRKV (Irkut virus), KHUV (Khujand virus), and WCBV (West Caucasian bat virus). RABV.PV and RABV.SADB-19 are vaccine strains. The probable location of the jump from bats to terrestrial mammals is marked by the X symbol. Bootstrap values are shown for key nodes. All horizontal branch lengths are drawn to a scale of nucleotide substitutions per site.
Evidence that these distributions reflect underlying differences in fitness, and all have the dog as the principal host. Third, a more detailed analysis of phylogenetic patterns reveals very little viral gene flow among geographic regions so that, on a global scale, populations of RABV are characterized by strong population subdivision (Bourhy et al. 2008). However, there are also clear, and extremely interesting, instances of spatial diffusion within individual geographical regions, which are discussed in greater detail below.

The marked spatial subdivision of RABV on a global scale is evidently a function of the relatively localized movement of dog populations, at least in comparison to humans. Despite this, occasional long distance movements of viruses are apparent, for example between the Old World and the Americas, and which most likely reflect the long-distance translocation of infected animals by humans. Rather harder to infer from the data currently available is from where (terrestrial mammal) RABV first originated, particularly as there appears to have been a relatively rapid radiation of viral lineages near the base of the RABV tree (Bourhy et al. 2008). In the largest
N gene tree (Fig. 7.16) the most divergent lineages are those sampled from the Indian sub-continent, which would be in accordance with at least some epidemiological records.

As well as global spatial dynamics, it is informative to infer the timescale of this epidemiological history. A variety of analyses of the rates and dates of RABV evolution have been undertaken. These studies have recorded broadly equivalent substitution rates—between 10^{-3} and 10^{-4} subs/site/year (Badrane and Tordo 2001; Holmes et al. 2002; Hughes et al. 2005; Davis et al. 2007; Bourhy et al. 2008)—although rather lower rates were estimated in the case of EBLV (Davis et al. 2005), and indicate that the current global genetic diversity of RABV appeared within the last 2000 years (Badrane and Tordo 2001; Holmes et al. 2002; Bourhy et al. 2008). This again supports the view that human translocation events have been critical in the global dissemination of RABV. In some cases, particularly that of fox rabies in Europe, the molecular clock estimates of evolutionary history are also in striking accord with epidemiological records (Bourhy et al. 1999). However, if a such a recent timescale of RABV evolution is true, then those suggestions that rabies was present before 2300 bc (Steele and Fernandez 1991) must have involved either lineages of RABV that have since gone extinct or different genotypes of lyssavirus.

7.4.2 The spatiotemporal dynamics of RABV

As noted at the start of this section, RABV has a particular importance in studies of viral evolution and phylogeography as it provides one of the very best illustrations of the link between spatial and evolutionary dynamics. To be more precise, there are now a variety of examples depicting how RABV moves in an invading wave across particular geographical areas, and that the pattern and dynamics of this wave can be determined through phylogenetic analysis. As an interesting aside, that the virus often travels as a wave, and at a specific rate, also means that that its movement is in some sense predictable (Russell et al. 2005). Further, because the spread of RABV essentially follows the dispersal patterns of its mammalian hosts, it also provides a beautiful example of how physical barriers, such as rivers and mountains, can inhibit the spread of viral infections. In what follows I will briefly discuss three waves of RABV epidemic spread, although similar spatial dynamics are observed in some of the bat lyssaviruses (Davis et al. 2005).

The first wave of RABV transmission I will describe occurred in Europe in a period spanning the 1930s to the present. Before the 1930s, RABV in Europe was most often associated with dogs, and in earlier times wolves. However, in the 1930s the virus established itself in two new host species: the red fox (Vulpes vulpes) and the raccoon dog (Nyctereutes procyonoides). Although raccoon dogs appear as if they were created using digital imaging software, this interesting group of carnivores was introduced in large numbers into Europe for the purposes of fur farming. The initial jump from dogs to foxes and raccoon dogs seems to have occurred in north-eastern Europe, perhaps near the border between Poland and the former Soviet Union, and then spread both westwards and southwards a rate of 30–60 km/year, reaching
Fig. 7.17 Transmission waves of RABV. (a) Spatial diffusion of RABV in red foxes and raccoon dogs in Europe (adapted from Bourhy et al. 1999 with permission). (b) Southerly spread of RABV in red foxes from Ontario, Canada (adapted from Real et al. 2005 with permission). (c) Phylogenetic analysis of raccoon RABV in the north-eastern USA and its spatial diffusion (adapted from Biek et al. 2007 with permission). In each case the phylogenetic tree on which the inference of spatial dynamics is based is shown.
7.4 Phylogeography of rabies virus

France in 1968 (Anderson et al. 1981; Bourhy et al. 1999). Such a spatial dynamic is clearly represented in phylogenetic trees of viral sequence data from isolates across Europe: the phylogeny has a ladder-like structure reflecting the east-to-west spread of the virus (Bourhy et al. 1999) (Fig. 7.17). Perhaps of even more interest was that the influence of physical barriers was also apparent in the structure of phylogenetic trees, such as the separation of viruses around the Bohemian and Carpathian mountains, and more dramatically by the Vistula river in Poland which appears to represent a major physical barrier for the virus circulating in raccoon dogs, although not in red foxes (Bourhy et al. 1999).

The second spatial wave of RABV described here occurred in red foxes from the Canadian province of Ontario (Nadin-Davis et al. 1993, 1999). Not only is the study of this particular epidemic important from the perspective of Canadian wildlife (with the virus in red foxes having jumped from that in arctic foxes), but it was the first to combine both state-of-the-art phylogenetics with spatial epidemiology (Real et al. 2005). In this case, the transmission wave moved southwards through Ontario during the 1980s and 1990s, resulting in two virus subpopulations with rather differing geographical distributions and marked isolation by distance (Real et al. 2005) (Fig. 7.17).

The final spatial wave of RABV explored here, and the one that has been examined in most detail, occurred in the eastern seaboard of the USA from the late 1970s to the present day. This epidemic involves raccoons (Procyon lotor), and has resulted in this species becoming the principal reservoir for RABV in the USA. The epidemic began when a population of raccoons were moved from the southern USA to the border of Virginia and West Virginia for hunting purposes in 1976 (Dobson 2000). The virus then spread in a north-eastwards fashion at a speed of 30–50 km/year, a rate remarkably similar to that recorded for fox rabies in Europe, eventually connecting with other foci of RABV in North America, including the southerly moving Ontario wave (Childs et al. 2000). Phylogenetic analyses of sequence data collected from 1977–2005 not only show the northerly advance of the wave-front (Biek et al. 2007) but local substructure, as viral lineages become isolated in different geographical regions (Fig. 7.17), in a similar manner to that of RABV in red foxes in Europe. That physical barriers, in this case the Allegheny and Appalachian mountains, have such a profound effect on dispersal highlights their potential for initiating the genetic differentiation of RNA viruses that are not spread by humans.
Epilogue

A combination of good theory, rigorous experimentation, and wide-ranging comparative analyses have dramatically improved our knowledge of the patterns and processes of RNA virus evolution. This book, which I hope is at least timely, serves as an attempt to summarize many of the insights that have stemmed from this research programme, albeit with an unashamed bias towards phylogenetic studies. Although I will not repeat my arguments of earlier chapters, it is worth stressing again that so much of the evolutionary biology of RNA viruses, from the number of progeny they produce, to the way their genomes are organized, and even their propensity to jump species barriers, seems to be a function of what I consider to be their defining feature: a remarkably rapid rate of mutation. Of course, this generality hides much of the idiosyncratic biology of individual viruses that we would be foolish to ignore.

Despite this evident progress, it is equally clear that important advances are still needed if we are to come to a complete understanding of the evolutionary biology of these unique and fascinating organisms. In what follows I will briefly outline a number of areas where I think particular attention is required, although I will leave the solutions to others. Thankfully, most of these fall into the category of ‘data-limited’ problems, which should readily be resolved given sufficient quantities of time, money, and application. Indeed, the remarkable advances in genome sequencing that have occurred in recent years mean that the ability to effectively analyse data is perhaps a greater barrier to future progress than the ability to generate it.

One area where analytical advances are particularly important is in the development of new methods that are able to recover phylogenetic signal in viral genomes that possess no clear similarity in primary sequence. As noted a number of times in this book, those comparative analyses that explore highly divergent gene sequences, either within or among genomes, are particularly compromised as much of the critical phylogenetic signal has been eroded beyond recognition. The situation is especially serious for studies of viral origins, where the inability to infer deep phylogenetic history means that much of the work in this area is understandably little more than speculation. Although there have been some promising recent developments in the recognition and analysis of distant homologies among protein sequences (Chang et al. 2008), the study of protein structure still seems the most profitable approach to reconstruct ancient viral evolution, particularly as there is a growing body of evidence that the phylogenetic signal present in patterns of protein folding is more robust than that in primary sequence. Of course, this statement
is also a rather glib one because the computational analysis of protein structure evolution is one of the most difficult problems in contemporary biology, with a number of major obstacles to overcome, including: (i) the identification of truly homologous structures in highly divergent proteins (as opposed to structures that have arisen through convergent evolution), (ii) the development of a metric that is able to accurately describe the evolutionary similarities and differences in homologous structures and, perhaps the biggest challenge of all, (iii) the development of a realistic model of protein structure evolution. Without such advances it is difficult to see how the study of viral origins and comparative genomics can move forward in a meaningful manner.

A very different form of phylogenetic limitation currently plagues studies of viral phylogeography. Although studies in this area abound (see Chapter 6) most are limited with respect to the precision of spatial and temporal sampling, so that it is usually only possible to make broad-brush statements on epidemiological dynamics. Hopefully the raise of pyrosequencing (and its descendants) will soon allow genome databases to increase to the required size and detail to allow a more informative molecular epidemiology, as opposed to the rather descriptive studies that are often undertaken at present. In particular, viral genomes must be sampled on at least the same scale as the epidemiological processes under investigation. Of equal importance, it is essential that these expanding databases of viral genomes be combined with other relevant epidemiological and clinical information, such as their precise geographical location, the exact date of sampling and, where it is appropriate, the clinical presentation of the disease (Holmes 2007). If there is one criticism of those sequence-based studies of viral epidemiology undertaken to date it is that they have often been taken out of context of other forms of biological data.

The rise of pyrosequencing may also allow us to close another major data gap in studies of RNA virus evolution: the accumulation and analysis of large-scale ‘clonal’ sequence data sampled from individual hosts, particularly those generated by acute RNA viruses during natural infections. As I argued in Chapter 3, a detailed description of the extent and structure of intra-host genetic variation is essential for a complete understanding of evolutionary dynamics. In the same way, it is of fundamental importance that these studies of clonal sequence data are able to span epidemiological scales, from individuals to populations, as the impact of many key evolutionary processes may likewise change across scales. To give one simple but extremely important example, the magnitude of the population bottleneck at inter-host transmission, which is central to revealing the respective roles of natural selection and genetic drift in viral evolution, is known in only a very limited number of cases. I wish also to stress the ‘natural’ aspect of these studies. As a comparative biologist I firmly believe that, where it is reasonably possible, research on viral evolution should recapitulate the natural situation. To be sure, although highly informative, evolution in vitro is not necessarily the same as evolution in natura.

I suspect those working with bacteriophages may be disappointed with some aspects of this book. Although this is in part due to the fact that my own research
interests primarily rest with viruses of humans and other mammals, there is also a marked absence of comparative studies of phage evolution. Indeed, despite their central role in the history of molecular biology, their ubiquity and diversity, and their current popularity in experimental studies of evolution, remarkably little is known about the molecular evolution of bacteriophages. As a simple case in point, there is currently no good estimate of the rate of nucleotide substitution, or of the timescale of evolutionary change, of bacteriophages in nature. Yet, such information would provide a unique insight into whether those measures of evolutionary dynamics inferred from in vitro studies can be readily transposed to the natural situation.

Finally, I would argue that the most basic, and therein important, advance required in the study of RNA virus evolution is a far greater understanding of their natural biodiversity. As noted right at the outset of this book it is clear that we are only scratching the surface of the number and spectrum of viruses (or virus-like particles) in nature, such that all generalities about their evolution must necessarily be made with a healthy dose of caution. Simple models of viral macroevolution predict that there are legions of unsampled viruses for any specific viral family (Pybus et al. 2002), and which are slowly being discovered (Grard et al. 2006; Kapoor et al. 2008), as well as a multitude of undescribed families. I suspect that the ‘virophage’ of mimivirus (La Scola et al. 2008) will not be the last new form of virus unearthed. It therefore seems obvious that the intensive exploration of the virosphere should be a research priority in the biological sciences, particularly as it is likely that a number of those viruses newly described will have the potential to spread and cause disease in human populations. Although some may regard this is as essentially a fishing exercise devoid of intellectual challenge, it is paramount if we are to understand how evolution produces such endless forms most beautiful.
References

Bell, P.J. (2001). Viral eukaryogenesis: was the ancestor of the nucleus a complex DNA virus? Journal of Molecular Evolution 53, 251–256.

References

References

References

References

• 217

References

HTLV-III/LAV over time in patients with AIDS or at risk for AIDS. Science 232, 1548–1553.

References

References

References

References

References

References

Index

acute infection 52, 56, 60, 83–84, 91, 103, 135–138, 154–155, 199
adaptation
 constraints to 7–8, 10, 16, 28, 40, 46, 48, 50, 55, 60–61, 65, 82, 105–106, 112, 114, 123, 139, 159, 165, 181
 off-the-shelf 144
tailor-made 144
agriculture 2, 154
allele fixation 59–61
ambisense genome 11
ancient DNA 44
ancient virus world 26–28
APOBEC3G 39, 65–66, 69
arbovirus 140, 181
archaebacteria (Archaea) 9, 19, 24–27
arenavirus 11, 13, 33, 50
Arteriviridae 29, 107–108
asymptomatic infection 43, 157, 190

bacteria 1, 7, 9, 14, 16–18, 24–25, 38, 47, 73, 80, 113, 117
Buchnera sp. 17–18
Escherichia coli 1
Mycobacterium tuberculosis 155
plasmid 19, 27, 31–35
bacteriophage 3, 9, 14, 18, 29, 36, 68, 113, 119, 199
Leviviridae 113
ϕ6 94
ϕX174 38
QB 37–38, 87, 93
baculovirus 24
basic reproductive number (R) 124, 133, 136–137, 139, 142, 154, 172
Beijerinck, Martinus 9
barnavirus 26
birth-death process 124–130, 133, 168, 176, 186–187
Black, Francis 137
BLAST algorithm 32–33
blood-borne transmission 151, 168
Bunyaviridae 25, 33, 43, 118
Burch, Christina 94
bushmeat 155
capsid protein 11, 17, 19, 26, 29, 49, 60–61, 114, 116–117, 119–120, 124
encapsidation 67, 112
jelly-roll capsid (JRC) 19, 26, 28
caulimovirus 11, 26, 31, 120
cell fusing agent virus 118
cell lysis 42, 138
cell receptor 60, 124, 140–146, 168
angiotensin-converting enzyme 2 (ACE2) 144
CD4 168, 173
chemokine 168
sialic acid 145
Chao, Lin 94
chimpanzee (Pan troglodytes) 130, 140, 144, 148, 168–169, 171–176
circovirus 10, 45, 105
clade replacement 186–188
closterovirus 44, 118
clonal evolution 61, 159
clonal interference 53, 93
coalescent 56, 132–135, 177
co-divergence 24, 40, 42–45, 135–141, 175
codon usage bias 67–70
consensus sequence 52, 73, 76–77, 83–84, 100
convergent evolution 19, 28, 82, 144, 199
complementation 7, 74–78, 86, 94, 111, 114
compensatory mutation 23, 54, 61, 77, 80–81
Coronaviridae 1, 3, 10, 29, 48, 50, 104, 106–113, 118–119, 144, 148
covarion substitution model 176
critical community size (CCS) 136–137, 139, 153–154, 190
cross-immunity 59, 191
Cystoviridae 113

deamination 45, 65, 107
defective interfering (DI) particle 74–75, 112, 138
deforestation 153, 155
dendritic cells 187
dengue
antibody-dependent enhancement (ADE) 186
fever (DF) 181
haemorrhagic fever (DHF) 181, 186
shock syndrome (DSS) 181, 186
sylvatic virus 139, 144, 181–184, 188, 190
d’Herelle, Felix 9
digital organism 91, 93
DNA polymerase 11
DNA polymerase II 20, 22
Domingo, Esteban 87, 93
Drake, Jan 38, 42, 45
Drosophila 1, 66, 68
drug resistance 8, 53, 55, 97, 104, 177–178
adamantane 59, 62, 85–86
zidovudine (AZT) 7, 59–60, 98, 168

Ebola virus (EBOV) 43, 50, 52, 141, 153
Ebola virus Zaire (EBOV-Zaire) 43
ecological transition 153–155
effective population size \(N_e\) 54, 56–59, 60, 67–68, 92, 97, 134, 177–178
Eigen, Manfred 21–23, 47–48, 87, 91–92
Eigen’s paradox 22–24, 48
Elena, Santiago 71, 78
cross-species transmission 7–8, 39, 63, 69, 121, 123, 128, 135–148, 154–155, 157–158, 167, 169, 175
spill-over transmission 7, 24, 180, 184, 188, 194
epidemiological dynamics 132–134, 188, 199
envelope protein 11–13, 19, 26, 49, 76, 120, 124, 142,
epistasis 37, 53–54, 67, 77–82, 100
antagonistic 54, 78–80
synergistic 78–80, 111
episodic evolution 130, 162
error catastrophe 100–103
error threshold 22–23, 99–101
relaxed error threshold 23
ExoN domain (3’-to-5’ exoribonuclease) 48, 107–108, 119
extinction threshold 100–103
evolvability 94
evolutionary stasis 159
evolutionary trade-off 46–47, 65, 116, 123
feline calicivirus (FCV) 138
feline immunodeficiency virus (FIV) 137
Flexiviridae 84
fitness 71, 79, 90, 95, 143, 147, 160
Flaviviridae 70, 118, 121, 122, 127, 180–191
5-fluorouracil (FU) 95, 102
foot-and-mouth-disease virus (FMDV) 1, 9, 73, 99, 101–102
fungi 13, 24, 35, 167
Pneumocystis carinii 167

gamma distribution (of among-site rate variation) 176
GB virus
A (GBV-A) 43
B (GBV-B) 84
C (GBV-C) 43, 73, 138, 140
gene duplication 6, 80, 109, 117–118
gene expression 10, 55, 66, 109, 112–114, 116
generation time 42–43, 60, 66
genetic drift 2, 37, 53, 55–70, 89, 92–93, 97, 116, 177, 199
genetic redundancy 80
gene evolution 34, 116–120
gene content 18, 34
gene order 31, 34, 114, 116
gene orientation 34, 110, 113–114
genome size 6–7, 10, 18, 23–24, 34, 47–48, 78, 82, 104–109, 112, 116–118
gibbon ape leukaemia virus (GALV) 128
greater spot-nosed monkeys (Cercopithecus nictitans) 175
Index • 251

Grenfell, Bryan 83
group selection 92

haemagglutinin esterase (HE) gene 118
hallmark gene 25
hantavirus 43–44, 73, 139
Harvey, Paul 133
helicase protein 26, 106, 108
hepatitis B virus (HBV) 22, 115, 140
hepatitis D (delta) agent (virus) (HDV) 10, 19, 21–22
herd immunity 188
herpesvirus 24, 26, 40, 137
Himalayan palm civet (Paguma larvata) 144, 147–148
hitch-hiking 62
Holland, John 93
human immunodeficiency virus (HIV)
AIDS 1, 138, 155, 167–180
circulating recombinant forms (CRFs) 169–170, 172
groups 169, 171, 179
HIV-2 137, 140, 168–169, 171, 173, 175
subtypes 154, 169–174
human leukocyte antigen (HLA) 43
HLA-B27 60, 178, 180
human papillomavirus (HPV) 40
human T-cell leukaemia virus (HTLV) 15, 42, 138, 140
hunter-gatherer 154
hypermutation 65
hyperthermophiles 24

immune escape 46, 62, 138, 144, 177
cytotoxic T-lymphocyte (CTL) escape 43
60–61, 178, 180
epitope 60–61, 161, 191
immune-mediated selection 188
immune response
adaptive 44, 46, 66, 142, 153, 177
innate 46, 66, 70, 82, 177
intrinsic 46, 65–66
T cell 60, 66, 144, 173, 177
immunological landscape 123
influenza A virus 156–167
antigenic cartography 162–166
antigenic drift 161–167
antigenic shift 161
haemagglutinin (HA) 12, 57, 83, 98, 145, 148, 157–164–167
haemagglutinin inhibition (HI) assay 164
H1N1 subtype 57, 135, 157–159, 161–163, 165–166
H3N2 subtype 57, 62, 135, 158–159, 161–166
H5N1 subtype 142, 145, 157, 159–160
neuraminidase (NA) protein 12, 57, 148, 157–161, 165
‘Spanish influenza’ (1918) 15, 52, 156–157
sink-source model 149–151, 167
internal ribosome entry site (IRES) 80, 112, 120
International Committee on Taxonomy of Viruses (ICTV) 29
intron 22, 67, 116
group II intron 26–27, 31–32
Ivanovsky, Dimitri 9

Japanese encephalitis virus (JEV) 181, 191
Jenner, Edward 8

Kamiti River virus 118
koala retrovirus (KoRV) 128–129
Koonin, Eugene 25–28

ladder-like phylogeny 98, 161–162, 178, 197
latent infection 42–43, 54
lateral gene transfer (LGT) 6–7, 9, 19, 24, 117–120
Levine, Arnold 9
life-history 48
lineage-through-time plot 133
linkage disequilibrium 53, 55, 60
lipid membrane 11
long terminal repeat (LTR) 128
Lynch, Michael 116
Lysavirus 192–193

macroevolution 8, 37, 104–130, 176, 200
major histocompatibility complex (MHC) 141
May, Robert 88
Mayer, Adolf 9
Maynard Smith, John 153
measles virus 40, 127, 132, 138–139, 152
subacute sclerosing panencephalitis (SSPE) 138–139
microevolution 37, 120, 186
mimicry 146–147
mimivirus 10, 14, 18, 25, 105, 200
mitochondrial DNA 10, 35, 40
mtDNA plasmid 31, 35
mitovirus 10–11, 35, 104
mixed infection 49, 85–86, 111
modular evolution 118–120
molecular clock 127, 154, 184, 192, 195
relaxed 133
strict 66, 133, 183
molecular epidemiology 6, 83, 121, 131, 149, 191, 199
monocistronic RNA 112
Mononegavirales 29, 31, 33, 114
monopartite genome 13
mosquito 59, 63, 70, 76, 84, 118, 181, 186–187, 190
Aedes aegypti 144, 182, 187–188, 190
mRNA molecule 11–12, 18–19, 21, 112–114
Muller’s ratchet 53–54
multicomponent virus 13, 48–49, 59, 76, 109, 111–112, 120
multigene family 117
multipartite genome 13
multiplicity of infection (MOI) 75–76, 111
universal mutation rate 38, 45
deleterious mutation rate per genome replication (U) 53–54, 70
mutation-selection balance 87–88, 92, 103
mutational deterministic hypothesis 53–55
mutational meltdown 23, 47, 107
mutational robustness 23, 28, 47, 76, 78–80, 84, 89–90, 94–95, 100, 102
mutator strains 7, 47, 71
myxomavirus 9

Narnaviridae 35, 104
immune selection 44, 98, 175 (also see immune escape)
positive 44, 59–60, 63, 65–66, 96, 98, 109, 115, 144, 146, 161, 177

Nidovirales 29, 107–108
non-human primates 24, 139–140, 153, 155, 168–169, 173, 182–184, 188
non-structural protein 109, 157
nonsynonymous site 16, 67, 70
nonsynonymous substitution 40, 44, 175
Nowak, Martin 88
nucleocapsid protein 11, 13, 114, 157
nucleotide (base) composition 63, 68–70, 157
multiple substitution 83, 124

open reading frame (ORF) 10, 45, 107, 109–110, 112–117
overlapping reading frame 10, 78, 83, 114–116
Orgel, Leslie 9
Orthomyxoviridae 33, 156

packaging 67, 106, 112
Paramyxoviridae 29
parallel evolution 28, 82–83
Partitiviridae 13
parvovirus 45, 142
canine (CPV) 45, 142
feline (FPV) 45, 142
human 45
Pasteur, Louis 191
persistent infection 18, 43, 82–83, 136–139, 150, 155
phenotypic mixing 49–50
phylodynamics 131–135
phylogenetic incongruence 62, 165
phylogeography 148–153, 192, 195, 199
gavity model 149–151
source-sink model 149–150, 167
transmission wave 149, 153, 191, 197
Picornavirales 29
pleiotropy 65, 67, 78, 82–83, 115

purifying 43, 54, 63–64, 70, 73, 84, 177
selective sweep 56, 177–178
‘survival of the fittest’ 89, 93–94, 96
‘survival of the flattest’ 80, 89–90, 94–95
Nee, Sean 133
neo-Darwinism 6
Neurospora Varkud satellite motif 21
neutral theory of molecular evolution 66, 98
neutral mutation 67
neutral network 165
neutral space 71, 78
Nidovirales 29, 107–108
non-human primates 24, 139–140, 153, 155, 168–169, 173, 182–184, 188
non-structural protein 109, 157
nonsynonymous site 16, 67, 70
nonsynonymous substitution 40, 44, 175
Nowak, Martin 88
nucleocapsid protein 11, 13, 114, 157
nucleotide (base) composition 63, 68–70, 157
multiple substitution 83, 124
poliovirus 9, 38, 42, 50, 57, 69–70, 75, 94, 96, 98, 155
polyribonucleotide RNA 113
polymerase chain reaction (PCR) 52, 83–84, 96
population bottleneck 44, 54, 58–59, 153, 176–177, 186, 199
population subdivision 132, 134, 153–154, 178, 194
postweaning multisystemic wasting syndrome (PMWS) 45
potyvirus 29, 50, 119–120
primary infection 176–177
primate lentiviruses 128, 137, 148, 171, 173–176
proofreading 10–11, 39, 45, 107
protein structure 16, 20, 25–28, 34, 198–199
α-helix 25–26
β-sheet 25–26
pseudogene 67, 116
pyrosequencing 3, 199
quasispecies 7, 38, 46, 80, 87–103
co-operation within 95–96
lethal mutagenesis 47, 100–103
master sequence 88–89
memory 99–100
mutational coupling 88–89, 91–92, 103
phenotypic quasispecies 92
quasispecies effect 94–95, 103
rabbit haemorrhagic disease virus (RHDV) 148
rabies virus (RABV) 153, 191–197
raccoon (Procyon lotor) 153, 191, 196
raccoon dog (Nyctereutes procyonoides) 195–197
red fox (Vulpes vulpes) 153, 195–197
Reoviridae 25
repair 10–11, 39, 45, 53, 107–108
replication
 copy-choice 48–50
 geometric 39, 46
 stamping-machine 39, 46
retroelement 26, 32, 118
retrotransposon 19, 31, 32
 endogenous retrovirus 43, 66, 128–130, 137, 168
reverse transcriptase (RT) 4–5, 11–12, 19, 25–26, 31–32, 39, 42, 50, 60, 98, 118, 128
Rhabdoviridae 25, 29, 192
ribavirin 47, 101
ribosomal frameshift 109–110, 113
ribozyme 20–24, 27
CPEB3 ribozyme 22
HDV 21–22
RNA-dependent RNA polymerase (RdRp)
 palm subdomain 19, 25–26, 28–29
RNA interference (RNAi) 66
RNA secondary structure 13, 21–23, 25, 34, 67, 77–78, 80–82, 84, 187
RNA world 7, 17, 19–24, 27, 103
Roniviridae 29, 48, 106–109, 121
rotavirus 1, 11, 83
Rush, Benjamin 181
Sanjuán, Raphael 78, 88
SARS coronavirus (SARS-CoV) 1, 108–110, 141, 144, 147–148
satellite RNA 10
sexual reproduction 48–49, 53, 55, 67, 111
sexual transmission 8, 58, 136, 139, 168, 172, 177, 179–180
simian foamy virus (SFV) 24, 42, 136, 153, 175
simian immunodeficiency virus (SIV) 61, 144, 155, 168–171, 173–175
simian T-cell leukaemia virus (STLV) 15
Simmonds, Peter 81–82
slave trade 154, 182–183, 188, 190
sooty mangabey monkey (Cercocebus torquatus atys) 140, 168, 173
speciation 137, 191
allopatric 121–124
sympatric 121–124
stop codon 35, 54, 73, 76–77, 109, 114
subgenomic RNA 10, 30, 76, 109–114
Sulfolobus turreted icosahedral virus 26
superspreaders 58, 180
synonymous site 40, 63, 67–68, 80–81, 84
Szathmáry, Eörs 153
Index

telomerase 26, 31–32
Tetrahymena thermophila 36
tobacco mosaic virus (TMV) 9, 44, 57
Tobamovirus 120
transcription 12, 13, 20, 67, 109–114
translation 9, 12–13, 35, 68–69, 80, 109–114
transmission network 135, 142, 145, 151
tropism 124
tRNA 19
tWort, Frederick 9
tymovirus 29, 114

untranslated region (3' and 5') 81, 117
urbanization 153–154, 190

vaccine 1, 8, 40, 95, 161, 167, 173, 181, 191
vaccine failure 40, 55, 164–165
vector-borne transmission
aphid 59, 63
mosquito 59, 63, 70, 76, 84, 118, 144,
181–182, 186–188, 190
tick 63, 70, 181, 184
Venezuelan equine encephalitis (VEE) virus 142
vertical transmission 128, 136, 139, 177

vesicular stomatitis virus (VSV) 46, 60, 70–71,
82–83, 89, 94–95, 113–114, 192
viraemia 173, 187, 190
viral supergroups 29–34, 120
viroid 4, 10, 20–22, 78, 94, 104
virion 11–12, 50, 57, 59, 70, 106,
124, 192
icosahedral 25, 26, 28, 35
tvrophere 9, 13–14, 200
virulence 58, 81, 136, 148, 158, 172,
176, 180, 184, 186–187, 190
virusoid 10
virus origins 15–26

West Nile virus (WNV) 73, 76, 84,
139, 181
wild-type 6, 89
Wilke, Claus 88, 92, 103
Woolhouse, Mark 144

yellow fever virus (YFV) 38, 140, 154,
181–182, 188–191
Philadelphia epidemic 181, 190